§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Щербакова Е. И. Теория и методика математического развития дошкольников: Учеб. пособие / Е. И. Щербакова. —— М.: Издательство Московского психолого-социального института; Воронеж: Издательство НПО «МОДЭК», 2005. - 392 с.
Стр. 41 Концепция математического развития дошкольников, разработанная А. М. Леушиной, служит источником для многих современных исследований, а дидактическая система, созданная ею, прошла опробование временем, показала свою эффективность в условиях общественного дошкольного воспитания, успешно функционирует уже несколько десятков лет. В 70—80-е гг. проведен ряд исследований по отдельным проблемам методики формирования элементарных математических представлений (Т. В. Тарунтаева, В. В. Данилова, Г. А. Корнеева, Т. Д. Рихтерман и др.), что значительно обогатило методику обучения математики в целом. В исследованиях А. М. Леушиной формирование понятия о числе основывалось главным образом на восприятии множества (дискретной величины). Однако ознакомление детей с числом только на основе сравнения конкретных множеств дает неполное представление о числе. Исследования П. Я. Гальперина и Л. С. Георгиева показали, что число должно восприниматься детьми прежде всего как результат измерения, как отношение измеряемой величины к избранной мере. В результате такого обучения дети раньше, чем по традиционной системе обучения, знакомятся с числом не только как характеристикой количества отдельных предметов, но и как показателем отношений. С самого начала обучения дети осознают тот факт, что число зависит прежде всего от выбранной меры, что мера — составная часть измеряемой величины и она не всегда идентична понятию единицы как отдельности. Современные исследования дали возможность включить в программу обучения в детском саду ознакомление детей с измерением. Исследования П. М. Эрдниева были направлены на изучение методики обучения вычислительной деятельности в детском саду и школе. В действующей до 60-х гг. методике решения арифметических задач детям предлагались сначала задачи на сложение, а потом — на вычитание. П. М. Эрдниев предложил новый метод — метод одновременного изучения этих действий, т. е. на одном занятии (уроке) детей знакомили с задачами на сложение и вычитание. Кроме того, исследования показали, что с первых шагов детей целесообразно знакомить с необходимостью иногда делать объединения или перестановку слагаемых, подчеркивая при этом, что от перемены мест слагаемых результат (сумма) не меняется. Такая подготовительная работа к изучению переместительного и соединительного законов сложения в детском саду дает возможность формировать у детей осознанное отношение к арифметическим действиям, вооружает их обобщенными способами выполнения видов математической деятельности. Особое значение П. М. Эрдниев придавал использованию дидактического материала. Следует отметить его справедливые замечания о том, что использование в одинаковой мере и в старшей и в младшей группах сюжетного наглядного материала (игрушки, картинки) негативно отражается в дальнейшем на результатах обучения детей в школе. Автор рекомендует пересмотреть наглядный материал, уделив большее внимание бессюжетному, абстрактному. |
Реклама
|
||