§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Леушина А. М. Формирование элементарных математических представлений у детей дошкольного возраста. –– М., Просвещение, 1974.- 368с.
Стр. 321 Дети задумываются. «Сколько у Валерика было шариков?»— спрашивает Боря. «Четыре шарика».— «А вы не сказали, сколько улетело,— замечает Ира.— Вы сказали «часть», а сколько это — часть? Часть ведь не отнимешь от четырех шариков»... «Нельзя так решить!..», «Надо два числа назвать, а не одно»,— раздаются возбужденные голоса. Воспитательница соглашается, что она сказала неточно, не назвала второе число, что в задаче всегда должно быть два числа. Она повторяет задачу в несколько измененном виде. «Валерик держал в руках четыре шарика, один из них улетел. Сколько шариков осталось у Валерика?» Дети с удовольствием решают задачу. На конкретных примерах из жизни дети яснее осознают необходимость двух чисел в условии задачи на вычисление, лучше усваивают отношения между числами и смысл арифметических действий, которые они, еще не формулируя, фактически совершают. После таких упражнений можно подвести детей к обобщенному пониманию составных частей задачи. Всякая задача на вычисление состоит из условия и вопроса. В уело нии имеются два числа. Но о чем говорится в условии? В условии содержатся отношения между числовыми данными. Анализ условия подводит детей к пониманию арифметических действий, которые надо совершить. Выяснив структуру задачи, дети легко выделяют в ней отдельные части. Затем следует поупражнять детей в повторении задачи в целом и отдельных частей. Можно предложить одним повторить условие, а другим вопрос или самим сформулировать его. Если дети сами придумывают задачи, то пусть одни составляют условие, а другие ставят вопрос. Иногда следует предлагать особо выделить числовые данные из условия задачи и сказать, нужно ли эти числа сложить или вычесть одно из другого, а затем объяснить, на основании чего ребенок думает, что надо сделать именно так, а не иначе. Методические приемы ознакомления детей с арифметическими действиями (сложение и вычитание). На начальном этапе дети находят ответ задачи, не вдумываясь еще, какое действие они совершают. Они опираются на прежний опыт оперирования множествами, на свои знания взаимно-обратных отношений между смежными числами. |
Реклама
|
||