§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Гусев А. Н., Измайлов Ч.А., Михалевская М.Б. Измерение в психологии: общий психологический практикум. / 2-е изд. -- М.: Смысл, 1998. - 286 с. - (Серия «Практикум». Вып. 2).
Стр. 109 Рассмотрим теперь, как соотносятся исходные данные с теоретической формой их выражения. Число независимых элементов в матрице F равно n(n-1)/2, где n — число стимулов. Тогда как закон сравнительных оценок, выраженный в формуле (3), имеет для тех же n стимулов и n неизвестных шкальных значений, n неизвестных дисперсий различительных процессов и n(n-1)/2 неизвестных корреляций. Совершенно очевидно, что при таком соотношении числа уравнений — n(n-1)/2 и числа неизвестных — 2n + n(n - 1)/2, решить данную систему невозможно. Поэтому необходимо ввести условия, упрощающие структуру выражения (3). § 3. Упрощенные варианты закона сравнительных сужденийТерстоун рассматривал 5 вариантов применения этого закона. Первый вариант — это та исходная общая форма закона, о которой уже говорилось. Второй вариант рассматривает изменение экспериментальной методики, обращаясь от оценок, производимых одним испытуемым, к групповым оценкам. Каждый испытуемый в этом случае производит только одно сравнение. И только третий, четвертый и пятый варианты вводят дополнительные допущения, которые меняют общую форму выражения (3). Торгерсон (1958) предложил развести эти варианты на два класса. К первому классу относятся изменения в методике проведения эксперимента. Это первый и второй варианты Терстоуна, и кроме того, Торгерсон предложил отнести сюда и смешанный опыт, когда несколько испытуемых сравнивают по несколько пар и все оценки сводятся в общую матрицу частот. Ко второму классу относятся изменения в форме закона сравнительных оценок. Сюда относятся 3, 4 и 5 варианты Терстоуна или, соответственно, условия А, В и С, которые предложил Торгерсон. III вариант Терстоуна. Предполагается, что корреляция между различительными процессами ri,j в выражении (3) равна нулю. В таком случае закон сравнительных оценок принимает форму: Торгерсон предлагает здесь менее жесткое ограничение, с условием (условие А), что ковариация в выражении (3) — равна постоянной величине (d). Тогда : |
Реклама
|
||