§ библиотека мастерская Помощь Контакты Вход —

Асмус В.Ф. Историко-философские этюды

В каталоге: Разное
Прислано в библиотеку: Gallaxy
Стр. 244

Я могу поставить вопрос, находится ли на 4-м месте этой последовательности простое число. Очевидно, ответ на этот вопрос будет утвердительный, так как 31—число простое. Теперь я вправе сказать, что определяемое моим вопросом свойство присуще данной последовательности. Справедливость этого утверждения уже не может быть изменена, каким бы образом ни происходило дальнейшее развертывание последовательности, будут или не будут простыми числами дальнейшие члены этой последовательности, получившиеся в результате свободного выбора. В работе «О новом кризисе основ математики» Вейль выразил идею свободно становящейся последователь* ности так: если последовательность «возникает постепенно, посредством свободных актов выбора, то ее следует рассматривать как становящуюся, а становящейся свободной последовательности (Wahlfolge) можно разумным образом приписывать только такие свойства, для которых дизъюнкция «да или нет» (присуще ли данное свойство последовательности или нет) разрешается на каком-нибудь определенном, достигнутом нами месте последовательности, разрешается при этом так, что, как бы ни происходило дальнейшее развертывание последовательности, за пределами этого пункта ее становления оно не меняет уже результата дизъюнкции» (5, 101).

Какое значение имеет эта точка зрения для математики? Ее значение в том, что не ограниченная никаким законом, свободная в своем развертывании последовательность представляет математические свойства континуума. Оказалось, что над свободными последовательностями можно осуществлять математические операции. Этот «континуум» содержит, правда, отдельные вещественные числа, но не разлагается на сумму «готовых», «предлежащих» вещественных чисел: он представляет, по выражению Вейля, «среду свободного становления».

Интуиционистское понятие «свободного становления» характеризует взгляд интуиционизма на значение для математики логического закона исключенного третьего. Согласно этому закону, утверждение А и его отрицание (Л) не могут быть оба сразу истинными и не могут быть оба сразу ложными. В соответствии с этим вопрос, существует ли последовательность чисел со свойством E или не существует, может быть решен в классической логике и в опиравшейся на нее доинтуиционистской математике только согласно формуле: «да» или «нет», третьего не дано. Пока мы имеем дело с конечными множествами, такое решение представляется неоспоримым. Но как только мы вступаем в область бесконечных множеств, положение радикально изменяется. ДоБрауэра полагали, что и для бесконечных множеств закон исключенного третьего сохраняет свою силу. В своих ранних работах Вейль, до того как он присоединился ко взгляду Брауэра, рассуждал следующим образом. В случае бесконечных множеств мы, разумеется, не в силах найти средства, с помощью которых мы могли бы дать определенный ответ на поставленный вопрос о принадлежности или непринадлежности свойства E бесконечной последовательности. Но и в этом случае дело не в том, что доступно (или не доступно) для нашего познания. Совершенно независимо от того, что может быть установлено нами, натуральный ряд чисел сам по себе таков, что «для всякого свойства £, имеющего смысл в области чисел, всегда определено, существуют ли числа вида E или не существуют» (5, 105). Хотя бы я не был способен — ввиду бесконечности ряда — решить, как именно обстоит дело, оно во всяком случае обстоит либо так, либо не так (см. 5, 106). Выходило, что закон исключенного третьего все же сохраняет свое значение.

из 269
Предыдущая    Следующая
 
Реклама
Авторизуйтесь