§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Асмус В.Ф. Историко-философские этюды. –– М.: Мысль, 1984
Стр. 223 В отличие от «логицистов» Пуанкаре не отмежевывается от философии и не скрывает связи своих идей с идеями философов, в частности с учением Канта об априорных синтетических суждениях математики. Но, так же как и «логицисты», Пуанкаре в своих рассуждениях по вопросу об интуиции в математике не отделяет ясно то, что в его аргументации вызвано его философскими предубеждениями, от того, что в ней определяется специально математическими обоснованиями и что имеет значение и ценность независимо от его философских позиций и несмотря на характерный для них путаный, непоследовательный идеализм. Задачу этого разграничения Пуанкаре предоставляет своим читателям и критикам. Будучи выполнено, это разграничение дает интересный результат. Оно лишний раз подтверждает, что проблема интуиции имеет не только философское, но и положительное научное содержание. Критика Пуанкаре показала, что сведение математики целиком к одной лишь логике встречает значительные трудности. Эти трудности не временные и обусловлены не только недостатком изобретательности «логицистов», пытавшихся свести математику к логике. Основа трудности здесь в том, что из математических рассуждений не могут быть полностью удалены некоторые их элементы и принципы, основывающиеся уже не на логике, а на интуиции, то есть на непосредственном интеллектуальном усмотрении. К сожалению, отчетливость в постановке вопроса о возможности сделать математику независимой от интуиции осложняется у Пуанкаре многозначностью его понятия об интуиции. В этом понятии математика постоянно смешивается с философией, математическая интуиция — с кантовскими априорными синтетическими суждениями (СНОСКА: Вот один из многочисленных примеров. В работе «Математика и логика», говоря о том, что Рассел вводит принципы, которые он выдает за недоказуемые, Пуанкаре возражает: «Но эти недоказуемые принципы... не что иное, как обращения к интуиции, синтетические суждения a priori» (18, 19). Здесь интуиция в математике прямо отождествлена с кантовским априорным синтетическим суждением. Но это совершенно неверно. Можно признавать факт существования интуиции в математике, но при этом не сводить интуицию к ее кантовскому типу! Заметим здесь, что на связь идей Пуанкаре со взглядами Канта не было обращено достаточное внимание. Может быть, это объясняется тем, что связь эта рельефнее всего выступает именно в вопросе о роли интуиции в математике. А проблему интуиции философы своим вниманием не жаловали. К вопросу об отношении Пуанкаре к Канту привлек внимание Абель Рей. В книге «Современная философия» («La philosophie moderne», Paris, 1908) Рей писал о теории Пуанкаре: «Не обратили достаточного внимания на ее связь с кантианством, из которого она вполне заимствует теорию синтетических суждений a priori...» В. И. Ленин, читавший и конспектировавший книгу Рея, дважды подчеркнул в процитированном нами месте фразу Рея об отношении Пуанкаре к Канту, а на полях конспекта напислл: «Пуанкаре π Кант» (3, 414)). Смешение это сильно затемняет проблему. Кантовский априоризм и смешение его с вопросом об интуиции способствуют возникновению ошибочного взгляда, будто несостоятельно и идеалистично всякое учение и всякое понятие об интуиции, будто признать, как это делает Пуанкаре, существование интуитивных элементов математики можно, только соглашаясь с учением Канта об априорном характере и чувственной природе интуиции пространства и времени. |
Реклама
|
||