§ библиотека мастерская Помощь Контакты Вход —

Цветкова Л.С. Нейропсихологие счета, письма и чтения: нарушение и восстановление

В каталоге: Логопедия
Прислано в библиотеку: kores80
Стр. 18

1.2. Понятие числа и его формирование у детей

Известно, что понятие числа у детей формируется сложным путем — сначала элементарные представления о «множественности», обозначаемой числом, позже — о количестве конкретных предметов, стоящих за числом, далее постепенно выделяется существенный признак числа и происходит отвлечение этого признака и обобщение. Русский ученый Д.Д. Галанин говорил, что определение числа как совокупности единиц односторонне и неправильно. «Я думаю, что понятие числа скорее содержится в отношении, для которого совокупность счетных единиц есть частный случай». Наиболее отчетливо эта характеристика числа проявляется в сложных операциях с отвлеченным числом. Так, по мнению Галанина, в понятии «больше (меньше) в несколько раз» содержится понятие отношения, которое никак не отражает представлений числа как совокупности счетных единиц. Эту сложную природу счета нужно учитывать при формировании понятий числа и счета у детей. Как писал Галанин, для того чтобы сформировать у ребенка представление о числе, недостаточно научить его перечислять предметы, так как при этом в лучшем случае у ребенка возникает представление единичности предметов и их совокупности, но не возникает представления количественности, поскольку число как определенное количество не содержится в перечисляемых предметах, формирование этого понятия возможно лишь одновременно с формированием логического мышления.

Исследователи, расходясь по многим вопросам, касающимся проблемы числа и счета, сходились в одном — формирование числа в генезе основывается на множественных и разнообразных связях, в которые вступает число, а усмотрение и оценка этих связей становится возможной лишь с привлечением высоких форм анализа, требующих обобщенного и отвлеченного восприятия числа, умения оперировать с самим числом, а не с его количественной сущностью.

Так, Ж. Пиаже, исследуя, развитие каких способностей детей связано с числом, установил, что эти способности касаются существенных и основополагающих свойств числовой системы, исходных предположений о природе и поведении чисел, которые средний взрослый в ходе повседневных арифметических операций использует молча потому, что они настолько глубоко в нем укоренились, что кажутся очевидными. Число, говорит Пиаже, позволяет группировать предметы в класс, устанавливая одновременно с этим определенные асимметрические отношения между ними (порядок — ординация). Поэтому овладение понятием числа предполагает понимание ординации, кардинации (количество) и их взаимоотношения. Число организует внимание и восприятие и таким образом позволяет установить сохранение количества. Но умение пользоваться соответствующей числовой характеристиской еще не гарантирует понимания количественной стороны числа. Для этого нужно овладеть не просто пересчетом элементов множества, но и упорядочением этих элементов на основании того места, которое каждый из них занимает в ряду по отношению к остальным.

из 257
Предыдущая    Следующая
 
Реклама
Авторизуйтесь