§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Готтсданкер Р. Основы психологического эксперимента: Учеб. пособие. Пер. с англ. —— М.: Изд-во Моск. ун-та, 1982. — 464 с.
Стр. 242 Поскольку кросс-индивидуальное уравнивание было введено для сокращения числа испытуемых по сравнению с их числом в межгрупповой схеме, полное позиционное уравнивание используется крайне редко. Нижеследующая схема позволяет сократить число испытуемых, избегая допущения об однородном переносе, необходимом для схемы реверсивного уравнивания. Латинский квадрат Если мы не хотим использовать все возможные последовательности, то естественно прийти к идее о случайном выборе из всего их множества. Иногда это и делается. Однако в случайно выбранном наборе последовательностей мало вероятно, что каждый уровень окажется в каждой позиции равное число раз. Поэтому нежелательные последствия неоднородного переноса будут по-прежнему существовать. Выходом будет случайный выбор среди «квадратов», в которых каждый уровень появляется один раз в каждой позиции. Каждый такой квадрат представляет собой полную экспериментальную схему. Он называется латинским квадратом. Приведем пример одного из 8640 таких квадратов для шести уровней независимой переменной:
Поскольку в латинском квадрате каждый уровень оказывается в каждой позиции последовательности, естественно, требуется столько групп испытуемых, сколько уровней независимой переменной. Если бы Готтсданкер и Уэй использовали (как это им и следовало сделать) латинский квадрат вместо реверсивного уравнивания, их испытуемые должны были разбиться на пять групп соответственно пяти уровням независимой переменной. Значит, в их опыте должны были бы принять участие пять или десять испытуемых вместо восьми, как это было на самом деле (ведь восемь на пять не делится). |
Реклама
|
||||||||||||||||