§ библиотека мастерская Помощь Контакты Вход —

Готтсданкер Р. Основы психологического эксперимента: Учеб. пособие. Пер. с англ

В каталоге: Психология
Прислано в библиотеку: VooDoo
Стр. 241

Если эффект переноса различен в различных последовательностях, то величина переноса оказывается переменной, производящей смешение. В только что разбиравшейся последовательности ВБАГД величина переноса для В равна 0 (поскольку это первое условие), для Б — 1 и для А, Г и Д — 2 (поскольку перенос не увеличивается после третьей пробы). Аналогично для обратной последовательности — ДГАБВ — величины переноса будут: 0 для Д, 1 для Г и 2 для А, Б, В. Общий суммарный эффект переноса будет равен: 4 для А, 3 для Б и Г, 2 для В и Д. Из-за неэффективности в подобных случаях схемы реверсивного уравнивания исследователи обратились к схемам, которые обеспечивают лучший контроль. Они и будут сейчас описаны.

Полное уравнивание

Для того чтобы избежать систематического смешения, возникающего при неоднородном переносе в схеме реверсивного уравнивания, можно использовать все возможные последовательности уровней, вместо двух. Такая схема с полным уравниванием для трехуровневого эксперимента выглядит следующим образом:

Группы испытуемых
Последовательности
1
АБВ
2
АВБ
3
БАВ
4
БВА
5
ВАБ
6
ВБА

 

Так, если бы в исследовании Готтсданкера и Уэй было использовано только три уровня независимой переменной (например 50, 100 и 200 мс), различным испытуемым — или группам испытуемых — были бы предъявлены следующие шесть последовательностей: 50, 100, 200 мс; 50, 200 и 100 мс; 100, 50 и 200 мс; 100, 200 и 50 мс; 200, 50 и 100 мс; 200, 100 и 50 мс. Мы не иллюстрируем полное уравнивание для большего числа уровней независимой переменной (обычно встречающегося в многоуровневых экспериментах) по той причине, что таблица оказалась бы слишком громоздкой. Например, для всех пяти уровней в исследовании Готтсданкера и Уэй потребовалось 120 последовательностей. Так что если бы даже только один испытуемый проводился через одну последовательность, то число испытуемых оказалось бы равным 120. Число последовательностей, необходимых для полного уравнивания, вычисляется как n-факториал, где n — число уровней. Для шести уровней n-факториал находится следующей серией умножений: 6Х5Х4ХЗХ2Х1=720.

из 375
Предыдущая    Следующая
 
Реклама
Авторизуйтесь