§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Психологическая диагностика: Учебное пособие / Под ред. К.М. Гуревича и Е.М. Борисовой. –– М.: Изд-во УРАО, 1997. – 304 с.
Стр. 277 Корреляция как метод статистического анализа в психологических исследованиях применяется очень часто. Всем, кто работает с применением корреляционного анализа, т.е. выясняет посредством этого метода тесноту связи двух рядов, следует напомнить, что коэффициент, как бы высок он ни был, нельзя интерпретировать как показатель наличия причинной связи между коррелируемыми рядами. Если коэффициент и может быть как-то использован в обсуждении вопроса о возможных причинных связях, то только в том случае, когда содержательная логика исследования и выдвигаемые при этом теоретические соображения позволяют опереться как на один из аргументов и на значение коэффициента корреляции. В изложении метода корреляции речь шла исключительно о линейных корреляциях, которые изображены на схемах №1,2, 4. Но там же приведена схема криволинейной корреляции (№ 5). Вообще говоря, вероятно, и в психике человека протекают процессы, взаимосвязь которых не имеет линейного вида. Вычисление нелинейных корреляций и, главное их истолкование не относятся к простейшим статистическим методам, о которых говорится в этой главе. Но об их существовании следует знать. Наконец, полезно напомнить, что корреляции по Пирсону (с определенными ограничениями и в определенных сочетаниях) создают ту базу, на которой открываются возможности перехода к так называемому факторному анализу. (Наиболее ясное изложение сути факторного анализа см.: Теплое Б.М. Типологические особенности в н.д. человека. М., 1967. Т. 5. С. 239). Метод определения меры различия между наблюдаемыми и предполагаемыми (теоретическими) численностями — хи-квадрат. Ранее были рассмотрены различные отношения между выборками: количественное преобладание какого-то признака, представленного в одной из выборок, теснота связи между выборками. Но есть еще одно важное отношение между ними: количественная разница распределений, благодаря которой при сопоставлении выборок открывается возможность прийти к содержательным выводам. Это отношение обнаруживается при сопоставлении распределений чис-ленностей. Допустим, что сравниваются две выборки, выпускников двух школ. Часть выпускников каждой школы сдавали экзамены в вузы. Из первой школы сдавали экзамены 100 человек, из них 82 успешно, не сдали 18. Таково распределение численности в первой выборке. Из второй школы сдавали экзамены в вузы 87 человек, выдержали 44 человека, не сдали — 43. Таково распределение чис-ленностей во второй выборке. Достаточно ли этих данных, чтобы утверждать, что подготовленность к вузовским экзаменам выпускников этих школ неодинакова? На первый взгяд, разница налицо: лучше подготовлены выпускники первой школы. Однако при таком раскладе численностей возможно влияние случайности. Поэтому встает вопрос, можно ли, считаясь с представленными распределениями, прийти к статистически обоснованному выводу о мере подготовленности к экзаменам в вузы той и другой выборки. |
Реклама
|
||