§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001. —— 408 с.: ил. — (Коррекционная педагогика)
Стр. 361 Далее можно провести последующую работу над этой же задачей (см. с. 357). В период ознакомления с решением составных задач наблюдается смешение их с простыми. Поэтому эффективными оказываются задания, в которых требуется: в простой задаче поставить такой вопрос, чтобы она решалась двумя действиями; дополнив простую задачу данными, изменить вопрос, чтобы задача решалась двумя действиями; в составной задаче изменить вопрос так, чтобы она решалась одним действием. Постоянное сопоставление простых и составных задач поможет сознательному их решению. Полезны упражнения на составление сложных задач. Это будет способствовать лучшему усвоению видов простых задач, умению их узнать и вычленить в составной задаче, поможет учащимся более сознательно осуществлять анализ задач. По мере знакомства учащихся с новыми арифметическими действиями — умножением и делением (3-й класс), а также с новыми математическими понятиями — учащиеся решают новые как простые, так и составные задачи, в которые входят эти простые. Например, учащиеся решают задачи на нахождение произведения и суммы или остатка, на деление на равные части и нахождение суммы, на увеличение (уменьшение) числа в несколько раз и нахождение суммы и разности и т. д. Составные задачи усложняются как за счет включения новых видов простых задач, так и за счет увеличения количества действий, которые надо выполнить, чтобы ответить на вопрос задачи. Если во 2-х и 3-х классах учащиеся решают задачи в 2 действия, то в 4—5-х классах — в 2—3 действия, в последующих классах — в 3—4 действия. При решении составных задач учащихся следует научить общим приемам работы над задачей: умению анализировать содержание задачи, выделяя известные данные, искомое (т. е. устанавливая, что нужно узнать в задаче), определять, каких данных недостает для ответа на главный вопрос задачи (т. е. устанавливая промежуточные искомые). Такому анализу содержания задачи во многом способствует умение учащихся конкретизировать его с помощью предметов, иллюстраций, краткой записи, схем и чертежей. Учитель должен научить учащихся приемам решения задач, показать, что решение любой задачи складывается из ряда этапов: работы над содержанием, составления плана и выбора действий выполнения действий и проверки правильности решения. , |
Реклама
|
||