§ библиотека мастерская Помощь Контакты Вход —

Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001

В каталоге: Дефектология
Прислано в библиотеку: VikaHaba
Стр. 288

Перед тем как познакомить учащихся с выражением неправильной дроби целым или смешанным числом, целесообразно повторить с ними деление целого числа на целое с остатком.

Закреплению нового для учащихся преобразования способствует решение задач жизненно-практического характера, например:

«В вазе лежит девять четвертых долей апельсина. Скол целых апельсинов можно сложить из этих долей? Сколько чети тых долей останется?»

«Для изготовления крышек для коробочек каждый лист карте 35 разрезают на 16 равных долей. Получили -^. Сколько цел! листов картона разрезали? Сколько шестнадцатых долей отрез! от следующего куска?» И т. д.

Выражение целого и смешанного числа неправильной дробью

Знакомству учащихся с этим новым преобразованием должп предшествовать решение задач, например:

«2 равных по длине куска ткани, имеющих форму квадрат. > разрезали на 4 равные части. Из каждой такой части сшили платок. Сколько получилось платков?»

Далее учитель предлагает учащимся выполнить такое задание «Возьмите целый круг и еще половину круга, равного по размс ру первому. Разрежьте целый круг пополам. Сколько всего половин получилось? Запишите: было 1 круга, стало круга, значит ,

13 1 2 = 2

Таким образом, опираясь на наглядно-практическую основу, рассматриваем еще ряд примеров. В рассматриваемых примерах учащимся предлагается сравнить исходное число (смешанное или целое) и число, которое получилось после преобразования (неправильная дробь).

Чтобы познакомить учеников с правилом выражения целого и смешанного числа неправильной дробью, надо привлечь их внимание к сравнению знаменателей смешанного числа и неправильной дроби, а также к тому, как получается числитель, например:

12 1 3 3 12 3

1 2"=?, 1 = 2", да еще ^, всего ^ 3 ^=?, 3=-^-, да еще ^, всего будет -^-. В итоге формулируется правило: чтобы смешанное число выразить неправильной дробью, надо знаменатель умножить на целое число, прибавить к произведению числитель и сумму записать числителем, а знаменатель оставить без изменения.

из 386
Предыдущая    Следующая
 
Реклама
Авторизуйтесь