§ библиотека мастерская Помощь Контакты Вход —

Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001

В каталоге: Дефектология
Прислано в библиотеку: VikaHaba
Стр. 223

Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй множитель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что действие им выполнено полностью.

Как и при умножении в пределах 1000, наибольшее затруднение вызывают случаи, в которых в множителе нуль находится в середине или на конце (105x9, 580x4).

Умения и навыки в делении многозначных чисел, особенно на двузначное и трехзначное числа, вырабатываются с еще большим трудом. Умственно отсталым школьникам трудно, а некоторым даже непосильно самостоятельно применить алгоритм деления. Требуется помощь учителя, его наводящие вопросы, чтобы ученик все операции при делении применил последовательно и правильно. Особенно трудно подобрать цифру частного и устно проверить, подходит ли она. Например, характерная ошибка, которая [тречается при делении, — неправильный выбор цифры частно-I, получение остатка больше делителя.

Умственно отсталые школьники, даже старших классов, отно-1тся к полученным ответам некритично. Они редко себя контро-_Фуют, не замечают абсурда (частное может получиться больше Делимого), полученного в ответе, и это их не смущает, не наталкивает на мысль о неправильности выполнения деления.

Наибольшего внимания и большего количества упражнений требуют примеры, в которых в частном получаются нули, как в середине, так и на конце.

Примеры на умножение и деление многозначных чисел неоднородны по трудности их решения. Трудность возрастает с увеличением числа знаков во множителе и делителе, а также с увеличением числа замен крупных разрядов более мелкими. Поэтому с умножением и делением надо знакомить учащихся в определенной последовательности, которая определяется нарастающей степенью трудности различных случаев.

из 386
Предыдущая    Следующая
 
Реклама
Авторизуйтесь