§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001. —— 408 с.: ил. — (Коррекционная педагогика)
Стр. 205 Когда учащиеся усвоят алгоритм деления, можно познакомить их с сокращенной записью. Действие деления проверяется умножением. Решаются сложные примеры на все четыре арифметических действия и на порядок действий. Деление на круглые десятки Предварительным материалом к данной теме является решение примеров вида 80:20, 120:20, в которых учащиеся деление производят как деление по содержанию 8 дес.:2 дес.=4 (раза), 12 дес.:2 дес.=6. На основании решения таких примеров учащие-210 {Я убеждаются, что если делимое и делитель оканчиваются нуля-ИИ, то частное легче получить, если деление выполнять, не обращая внимания на нули, т. е. мысленно отбросить (120:20=6). При этом обращается внимание учащихся на то, что, отбрасывая пуль в делимом, мы его делим на 10. Затем учащиеся знакомятся с делением трехзначно-30 го числа на двузначное, используя алгоритм письмен-"24" ного деления: делим 72 десятка на 3 десятка. От учащихся необходимо требовать проверки действия деле-120 ния умножением. Для закрепления действий, выработки прочных навыков вычислений и повторения теоретических знаний решаются примеры на нахождение неизвестных компонентов действия, порядок действий. Вопросы и задания 1. Подготовьте сообщение на тему «Особенности и трудности усвоения нумерации многозначных чисел». 2. Составьте схему последовательности изучения нумерации первой тысячи. 3. Составьте фрагмент урока на одну из тем: «Нумерация круглых сотен», «Устная нумерация трехзначных чисел», «Письменная нумерация трехзначных чисел». Изготовьте наглядные пособия к этим урокам. 4. Составьте примеры на сложение и вычитание с возрастающей степенью трудности. 5. Какие трудности испытывают учащиеся при решении примеров вида 814—208, 346—149? Каковы пути преодоления этих трудностей? |
Реклама
|
||