§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001. —— 408 с.: ил. — (Коррекционная педагогика)
Стр. 139 „Объяснение вычитания проводится на наглядных пособиях. / Например, 15—12. «Какое действие надо выполнить? Прочитайте пример. Назовите уменьшаемое, вычитаемое. Сколько знаков имеют эти числа? Как они называются? Сегодня будем учитьпычитать из двузначного числа двузначное. Из чего состоит ло 15? Отложим его на счетах. Из чего состоит вычитаемое Вычитать будем так: от 15 отнимем 1 десяток. Какое число !лось? От 5 единиц отнимем 2 единицы. Какое число получи, в остатке? Значит, 15—12=3». Хналогично объясняется вычитание двузначного числа из 20 (рис. 10). Покажем на счетах последовательность вычитания дву-Н1.1чного числа из 20: Целесообразно также использовать прием составления одного примера на сложение с тремя примерами: одного на сложение (перестановка слагаемых) и двух на вычитание. Необходимо сопоставлять компоненты этих примеров, подчеркивать их взаимосвязь (12+5, 5+12, 17-5, 17-12). III. Сложение и вычитание с переходом через разряд представляет наибольшие трудности для учащихся школы VIII вида. Трудности связаны с тем, что сразу происходит актуализация ранее полученных знаний, их упорядочение и последовательное выполнение ряда логических операций. Чтобы сложить числа 7 и 5, нужно выполнить следующие операции: 1. Разложить второе слагаемое (5) на два числа так, чтобы одно из них дополняло первое слагаемое до 10. 2. Дополнить первое слагаемое до 10, т. е. прибавить к первому слагаемому (7) одно из чисел, на которое разложили второе слагаемое (т.е. 3). . К полученному числу (10) прибавить оставшееся число (2)у Учащиеся затрудняются, во-первых, в разложении второго слагаемого, так как, чтобы его разложить, нужно произвести мысленно две операции: а) определить, сколько единиц недостает в н<-\ вом слагаемом до десятка; б) разложить второе слагаемое. Вторая трудность заключается в том, чтобы удержать в пал число, которое осталось после дополнения первого слагаемой десятка, например: 7+5. Учащиеся дополнили 7 до 10, но помнят, сколько же нужно прибавить к 10. |
Реклама
|
||