§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Щербакова Е. И. Теория и методика математического развития дошкольников: Учеб. пособие / Е. И. Щербакова. —— М.: Издательство Московского психолого-социального института; Воронеж: Издательство НПО «МОДЭК», 2005. - 392 с.
Стр. 89
Действия с множествами лучше всего изображать графически. Так, на рис. 5 изображено объединений множеств. Пересечением двух множеств называется множество, которое состоит из общих элементов. На рис. 6 графически изображено пересечение множеств. Так, например, если одно множество характеризуется по признаку формы (различные треугольники), а второе множество — по цвету (красные геометрические фигуры), то пересечением этих множеств будут красные треугольники. Рис. 6 При вычитании двух множеств получаем третье множество, которое называется разностью. Разность включает элементы первого множества, которые не принадлежат второму. Так, если первое множество состояло из геометрических фигур разного цвета, а второе — из красных геометрических фигур, то разностью являются все геометрические фигуры, включенные в первое множество, но не красного цвета. Или такой пример. Обозначим множество студентов в группе буквой А, множество девушек в этой группе — В. Чтобы узнать множество юношей в их группе, надо вычесть элементы второго множества из первого (А—В). На рис. 7 заштрихованная часть является разностью двух множеств. Характеризуя множества, в математике используются такие понятия: конечное и бесконечное множества, равномощное При этом заметим, что дети раннего и дошкольного возрастов в основном знакомятся только с конечными, непересекающимися множествами. |
Реклама
|
|||