§ библиотека мастерская Помощь Контакты Вход —

Щербакова Е. И. Теория и методика математического развития дошкольников: Учеб. пособие / Е. И. Щербакова

В каталоге: Педагогика
Прислано в библиотеку: Cole
Стр. 20

Операции с числами сначала были не арифметическими, а двигательными. Следы этого сохранились во многих языках, в том числе и русском. Так, числа от одиннадцати до девятнадцати произносятся как соответствующее число единиц, положенных на десять: один на дцать, пять на дцать и т. д. В этом случае частицу «на» следует понимать именно как «положенное на». Позднее возникли арифметические операции.

Постепенно определился последовательный ряд натуральных чисел. Основную роль в создании алгорифмиче-скихчисел играла операция сложения (прибавления), хотя иногда использовалось и вычитание, еще реже умножение. Особенно это прослеживается в римской нумерации: VI = 5 + 1;ХС= 100 — 10 и т. д. Образование алгоритмических чисел на основе использования арифметических операций нашло отражение в названиях некоторых чисел в украинском, белорусском, французском и других языках.

Однако числовой ряд на этой стадии еще не был однородным и бесконечным. Долгое время он был ограниченным (конечным). Последними числами в ряду были и 3, и 7, и 12, и 40, и др. Наибольшее освоенное число натурального ряда, которое граничило с бесконечностью, часто приобретало особый ореол необыкновенного и, очевидно, было основой для возникновения запретов, связанных с этими числами. (Некоторые из этих поверий сохранились до настоящего времени.) Такими числами были: 7,13, 40 и др.

Число 40 в легендах многих восточных народов играет особую роль. Выражение «сорок сороков», часто используемое в русском языке, является обозначением очень большого, бесконечно большого числа.

Что касается счета сороками, то есть и еще одно предположение о том, что это исходит от счета по суставам пальцев. Сибирские звероловы считали большим пальцем по двум суставам остальных четырех пальцев, таким образом досчитывая до сорока. Использование третьего сустава в этом процессе считалось неудобным.

Постепенно узловые и алгорифмические числа заполняли ряд, который является бесконечным. Натуральных чисел бесконечно много, среди них нет наибольшего. Какое бы большое число мы не взяли, если прибавим к нему единицу, то получим еще большее число. Эта бесконечность числового ряда создает значительные трудности при логическом осмыслении арифметики.

из 287
Предыдущая    Следующая
 
Реклама
Авторизуйтесь