§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Щедровицкий Г. П. Процессы и структуры в мышлении. Курс лекций - М.: "Путь", 2003
Стр. 138 Общий вывод таков: в зависимости от того, каким "строительным материалом" мы владеем, из каких блоков мы будем строить рассуждение, наш процесс будет принимать тот или иной вид. Таким образом, мы пришли к исключительно важному и принципиальному различению. Рядом с построенным нами решением (или текстом) должен быть еще арсенал или резервуар, в котором находятся материал и средства нашей деятельности. Но таким образом мы приходим к двум новым группам проблем: 1. что такое сами средства, какие виды их существуют? 2. что представляет собой сам процесс (и механизм) построения решения на базе этих средств, процесс "собирания" решения (и, соответственно, текста)? Третий важнейший результат заключался в том, что мы поняли, что сами операции ни в коем случае не могут быть представлены в виде переходов от одних знаний к другим знаниям. В процессе рассуждения обязательно участвуют объекты. В любом целостном рассуждении мы всегда преобразуем так или иначе те или иные объекты. Очень часто мы кроме того как бы движемся по их структуре – расчленяем объекты (например, в треугольнике выделяем его стороны), добавляем новые структурные элементы в объекты и т.д. Таким образом, на передний план выдвинулись объекты, и стала понятной важность анализа их структур. Характерно, что когда мы говорили об операциях, у нас не было проблемы движения по объектам, и мы никогда не говорили о структуре объектов. В-четвертых, мы поняли, что нам не удается схватить принципы и способы организации или соединения отдельных операций в сложные цепи и структуры. Например, при анализе рассуждений Аристарха мы выяснили, что цель работы состоит в том, чтобы построить последовательную цепочку связей и переходов между рядом величин. Это была та система переходов и связок, о которой мы говорили в первом пункте. В определенном аспекте такая цепь соотношений является конечным продуктом нашей работы. Мы можем представить дело так, что в своем движении по задачам мы точно так же следуем вроде бы этой последовательности, или цепи, соотношений. Тогда, следуя принципу соответствия между подобными связками и задачами, мы можем построить два ряда: |
Реклама
|
||