§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Леушина А. М. Формирование элементарных математических представлений у детей дошкольного возраста. –– М., Просвещение, 1974.- 368с.
Стр. 107 ГЛАВА V. РАЗВИТИЕ У ДЕТЕЙ СТАРШЕГО ДОШКОЛЬНОГО ВОЗРАСТА ПРИЕМОВ ИЗМЕРЕНИЯ ДЛИНЫ, МАССЫ, ВМЕСТИМОСТИ СОСУДОВИзмерение общепринятыми мерами длины, массы, вместимости сосудов является частью математических знаний. Счет предметов и простейшие измерения — это два вида деятельности, которые тесно связаны с элементарными потребностями человека. Ф. Энгельс указывает: «Как и все другие науки, математика возникла из практических потребностей людей: из измерения площадей земельных участков и вместимости сосудов, из счисления времени и из механики» . Характерное свойство величины заключается в том, что она может быть измерена, т. е. тем или иным путем сравнена с некоторой определенной величиной того же рода, которая принимается за единицу измерения. Самый процесс сравнения зависит от свойства исследуемой величины и называется измерением. В результате же измерения получается отвлеченное число, выражающее отношение рассматриваемой величины к величине, принятой за единицу измерения. Измерение расширяет наше представление о предметах и явлениях окружающей действительности. Практическое измерение времени, различных видов протяженности, массы, вместимости сосудов углубляет наши временные и пространственные представления, способствует дальнейшему развитию логического мышления в единстве с сенсорикой. Измерение, в процессе которого используется более короткая мера, откладываемая по измеряемой протяженности известное число раз, включает в себя, как указывает Ж. Пиаже, две логические операции. Первая — это процесс разделения, который позволяет ребенку понять, что целое состоит из некоторого числа сложенных вместе частей. Вторая — это операция смещения или замещения, которая позволяет ему присоединить одну часть к другой и таким путем создавать систему единиц 2. На основании данной характеристики Пиаже приходит к выводу, что «измерение развивается позднее, чем понятие числа, потому что труднее разделить непрерывное целое на взаимозаменяемые единицы, чем перечислить уже разделенные элементы» . |
Реклама
|
||