§ библиотека мастерская Помощь Контакты Вход —

Ивин А.А. Логика: Учебник для гуманитарных вузов

В каталоге: Разное
Прислано в библиотеку: Gallaxy
Стр. 141

Глава 7. Логика высказываний

1. Логический закон

Логика высказываний является теорией тех логических связей высказываний, которые не зависят от внутреннего строения (структуры) простых высказываний.

Логика высказываний исходит из следующих двух допущений:

1) всякое высказывание является либо истинным либо ложным (принцип двузначности);

2) истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи.

На основе этих допущений ранее были даны строгие определения логических связок «и», «или», «если, то» и др. Эти определения формулировались в виде таблиц истинности и назывались табличными определениями связок. Соответственно, само построение логики высказываний, опирающееся на данные определения, называется табличным её построением.

Согласно принятым определениям:

§   конъюнкция истинна, когда оба входящих в неё высказывания истинны;

§   дизъюнкция истинна, когда хотя бы одно из входящих в неё высказываний истинно;

§   строгая дизъюнкция истинна, когда одно из входящих в неё высказываний истинно, а второе ложно;

§   импликация истинна в трех случаях: её основание и следствие истинны; основание ложно, а следствие истинно; и основание, и следствие ложны;

§   эквивалентность истинна, когда два приравниваемых в ней высказывания оба истинны или оба ложны;

§   отрицательное высказывание истинно, когда отрицаемое высказывание ложно, и наоборот.

С помощью таблиц истинности в случае любого сложного высказывания можно определить, при каких значениях истинности входящих в него простых высказываний это высказывание истинно, а при каких ложно.

Логика высказываний – это определённая совокупность формул, т.е. сложных высказываний, записанных на специально сконструированном искусственном языке. Язык логики высказываний включает:

1. неограниченное множество переменных: А, В, С,…, А1, В1, С1,…, представляющих высказывания;

из 332
Предыдущая    Следующая
 
Реклама
Авторизуйтесь