§ библиотека мастерская Помощь Контакты Вход —

Малых Р.Ф. Вопросы методики обучения математике слепых и слабовидящих младших школьников: Учебное пособие к спецкурсу

В каталоге: Дефектология
Прислано в библиотеку: syira
Стр. 43

Например, фрагмент одного из уроков в классе слепых:

Учитель. Поставьте в первый ряд наборного полотна 6 кружков. Под каждым из кружков положите треугольник. Что можно сказать о числе кружков и треугольников? Сравните их числа.

Учащиеся. Кружков и треугольников поровну, кружков столько же, сколько и треугольников.

Учащиеся, выполняя упражнения с различными предметами, должны понимать, что значит положить, например, столько же морковок, сколько и тарелок, и другие. Значит и для формирования определенного навыка, учащимся предлагаются такие задания: «В первый ряд положили 5 яблок, а во второй столько же груш».

2. Упражнения в преобразовании равночисленных множеств в неравночисленные путем добавления к одному из множеств несколько элементов или удаления их из него.

Например, на одном из уроков предлагаются задания:

Учитель. Поставьте в наборные полотна 4 апельсина (трафареты), во второй ряд столько же слив, да еще 2 сливы. Что можно сказать о числе слив по сравнению с числом апельсинов? Их больше или меньше? На сколько?

Учащиеся. На 2 сливы больше, чем апельсинов.

Учитель. А теперь положите апельсинов 4, слив столько же, но без одной. Что можно сказать о числе слив?

Учащиеся. Слив на 1 меньше, чем апельсинов.

В ходе выполнения подобных упражнений, важно, чтобы учащиеся понимали: если одних предметов столько жe, сколько и других, то при добавлении одних становится больше на сколько-то единиц, при удалении – меньше.

3. Упражнения, позволяющие увидеть, насколько учащиеся понимают, что означают выражения «больше на», «меньше на». Задания даются, например, следующие: «Положите квадратов 7, а кружкой на 2 больше (меньше)». Здесь необходимо проследить за тем, как учащиеся оформляют в речи свои действия: «Кружков столько же, сколько и квадратов, значит 7, да еще 3 кружка». «Кружков я положил столько же, сколько и квадратов и убрал 3, так как их меньше на З».

из 90
Предыдущая    Следующая
 
Реклама
Авторизуйтесь