§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Новиков А.М., Новиков Д.А. Методология. –– М.: СИНТЕГ. – 663 с.
Стр. 245 В математическом смысле суть оптимизации, вкратце, заключается в следующем. Пусть состояние моделируемой системы определяется совокупностью показателей: x = (x1, x2, x3, ..., xn), принимающих числовые значения. На множество возможных состояний системы наложено ограничение: x Î X, где множество X определяется существующими физическими, технологическими, логическими, ресурсными и другими ограничениями. Далее вводится функция F(x), зависящая от x1, x2, x3, ..., xn, которая называется критерием эффективности и принимает числовое значение. Считается, что чем бóльшие значения принимает функция F(x), тем выше эффективность, то есть, тем «лучше» состояние x системы. Задача оптимизации заключается в нахождении оптимального значения x*, то есть допустимого состояния системы (x Î X), имеющего максимальную эффективность: для всех x из множества X выполняется F(x*) ³ F(x). Приведем пример простейшей задачи оптимизации. Пусть имеется R единиц ресурса, и n инвестиционных проектов. Каждый проект характеризуется отдачей ai> 0 на единицу вложенных средств. Величина xi ³ 0 описывает, какое количество ресурса инвестируется в i-ый проект. Множеством X в данном примере будет множество таких векторов инвестиций, сумма компонентов которых не превосходит бюджетного ограничения: x1 + x2 + x3 + ... + xn £ R, то есть, допустимы любые комбинации инвестиций, удовлетворяющих ограничению на первоначальное количество ресурса. Критерием эффективности естественно считать суммарную отдачу от инвестиций: F(x) = a1 x1 + a2 x2 +... + an xn. Оптимальным в данном примере будет вложение всех средств в тот инвестиционный проект, который характеризуется максимальной отдачей на единицу вложенных средств (с максимальным значением ai). |
Реклама
|
||