§ библиотека мастерская Помощь Контакты Вход —

Обучение детей с нарушениями интеллектуального развития: (Олигофренопедагогика): Учеб. пособие для студ. высш. пед. учеб, заведений / Б.П.Пузанов, Н.П.Коняева, Б.Б.Горскин и др.; Под ред. Б.П.Пузанова

В каталоге: Дефектология
Прислано в библиотеку: Динэль
Стр. 159

К. П. Аржеников также был сторонником индуктивного метода введения понятия «класс» и придерживался идеи раздельного изучения нумерации многозначных чисел и действий с ними, как и Д. Л. Волковский, но разработанная им система и методика ограничивались изучением целых неотрицательных чисел только в пределах 1 000 000.

Переход к дедуктивному пути развертывания программного содержания раздела «Нумерация многозначных чисел» в конце 40-х - начале 50-х годов, по всей видимости, можно связать с именем А. С. Пчелко. Но в то же время нельзя говорить о том, что разработанная им система изучения нумерации многозначных чисел построена на основе дедуктивного метода «в чистом виде», так как обобщению знаний о разрядах все-таки предшествовало индуктивное ознакомление с образованием единицы тысяч, десятка тысяч, сотни, тысяч, которое заканчивалось установлением аналогии в их образовании с образованием разрядных единиц первого класса и первоначальным ознакомлением школьников с понятием «класс».

Таким образом, возникло два противоположных мнения на последовательность и методику формирования знаний о классах.

К. П. Аржеников, Д. Л. Волковский, И. Н. Кавун, Н. С. Попова, Г. Б. Поляк и другие авторы рекомендовали вести раздельное изучение нумерации четырех-, пятии шестизначных чисел индуктивным методом. Данный подход был подвергнут критике Г. В. Бельтюковой, которая писала, что данная система изучения не учитывает и не раскрывает особенность нашей нумерации - группировку единиц по классам. Поэтому знакомство с новой разрядной единицей, счет этих разрядных единиц, образование соответствующих разрядных чисел, образование алгоритмических чисел приходится проделывать трижды: относительно единиц тысяч, десятков тысяч и сотен тысяч.

В дальнейшем целесообразность использования дедуктивного метода обучения нумерации многозначных чисел Л. Н. Скаткиным, М. И. Моро, А. М. Пышкало, П. М. Эрдниевым признается очевидной, но и в русле этой концепции возникает несколько течений.

из 298
Предыдущая    Следующая
 
Реклама
Авторизуйтесь