§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Обучение детей с нарушениями интеллектуального развития: (Олигофренопедагогика): Учеб. пособие для студ. высш. пед. учеб, заведений / Б.П.Пузанов, Н.П.Коняева, Б.Б.Горскин и др.; Под ред. Б.П.Пузанова. -- М.: Издательский центр «Академия», 2001. - 272 с.
Стр. 149 Например, если при измерении данного отрезка а с помощью единичного отрезка (мерки) Ъ выясняется, что отрезок а состоит из трех отрезков, равных Ъ, делается запись а = Ъ + Ъ + Ь. Таким образом, натуральное число п возникает как численное значение длины отрезка а, которое показывает, из скольких единичных отрезков Ъ состоит измеряемый отрезок а. Критики систем обучения математике, основанных на формулах «измерение величин - натуральное число» (П. Я. Гальперин, Л. С. Георгиев, Н. Ф. Талызина и др.) и «измерение величин - буквенный символ - натуральное число» (В. В.Давыдов и др.), не могли не признать, что ни в одной другой области знания не развито столь сильно, как в математике, дедуктивное и дедуктивно-аксиоматическое начало. Тем не менее соображения психолого-педагогического характера, касающиеся доступности учебного материала, служили для них достаточным основанием, чтобы отклониться в школьном обучении от логики научной системы. Но вместе с тем, если измерение рассматривать как единственную основу для введения понятия числа, то при последующем обучении возникнут трудности, поскольку количественная, порядковая и операторная стороны числа отодвигаются на второй план. Разделяя эту позицию, Н. А. Менчинская и М. И. Моро указывали, что научить детей оперировать количественными характеристиками сразу в обобщенной форме, используя дедуктивный метод на начальном этапе обучения числам, крайне трудно, а неоправданная формализация обучения арифметике отрывает ее от жизни. Отрицая возможность формирования у умственно отсталых детей первоначальных знаний о числах дедуктивным методом на основе измерений, нельзя не согласиться с тем, что полноценное овладение учеником понятием числа безусловно предполагает усвоение школьниками знаний о числах, полученных при измерении величин. Также односторонне с психологической точки зрения рассматривали понятие числа сторонники индуктивного пути формирования первоначальных математических знаний с помощью метода изучения чисел (А. В.Грубе, И. П. Паульсон, В. А. Евтушевский), метода изучения чисел при помощи числовых фигур (В. А. Лай) и метода изучения действий (В. А. Латышев, А. И. Гольденберг). |
Реклама
|
||