§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Татарова Г.Г. Методология анализа данных в социологии (введение) /Учебник для вузов. —— М.: NOTA BENE, 1999. — 224 с.
Стр. 68 Индекс, который мы рассматриваем, имеет достаточно простую, прозрачную конструкцию. Возникает вопрос, что будет, если число градаций на порядковой шкале увеличить. Самый простой ответ на этот вопрос обусловлен существованием интересного феномена в методической социологии. Назовем его условно для образности и яркости «законом триад». Какое бы исследование ни проводилось, социолог пользуется этим законом. Например, выбирает предприятия, территориальные образования, исходя из простой схемы: большое — среднее — малое. Выбирает для опроса студенческие группы: хорошие — средние — плохие. Анализирует отдельно различные группы по доходу: богатые — средние — бедные. Могут быть триады типа: § удовлетворенные — и да, и нет — не удовлетворенные § уверенные — и да, и нет — неуверенные § вероятные — мало вероятные — невероятные § интересующиеся — и да, и нет — не интересующиеся § Список можно продолжать до бесконечности, но не в этом дело. Для нас с вами важно, что в группе, например, «богатых» можно в свою очередь ввести новую триаду: § богатые, но не очень — достаточно богатые — очень богатые, А, например, между группами «удовлетворенных» и тех, кто «и да, и нет», также можно ввести новую триаду. Это очень удобный и простой способ, и для создания порядковых шкал, и для трансформации шкал, т. е. увеличения или уменьшения числа градаций на шкале. Разумеется, речь идет о так называемых сбалансированных шкалах. К ним относятся порядковые шкалы, на которых есть нейтральное положение и число «положительных» позиций равно числу «отрицательных». Сбалансированные шкалы пришли в социологию из психологии, где при измерениях опираются на модель «стимул — реакция». Соответственно, предполагается, что реакция может быть положительной, нейтральной и отрицательной. Вернемся к задаче формирования индекса для характеристики группы в случае, когда исходные порядковые шкалы имеют большее число градаций, чем пять. В этом случае можно преобразовать исходную шкалу в шкалу с меньшим числом градаций и предложенным способом вычислить групповой индекс. Но следует иметь в виду, что преобразовать необходимо в сбалансированную шкалу. Если же этого нельзя сделать, то возможно проводить сравнения различных групп респондентов на основе других показателей, например на так называемых мерах центральной тенденции. О них будем говорить в соответствующем разделе книги. |
Реклама
|
||