§ библиотека мастерская Помощь Контакты Вход —

Татарова Г.Г. Методология анализа данных в социологии (введение) /Учебник для вузов

В каталоге: Разное
Прислано в библиотеку: Vsevolod
Стр. 175

image181.jpg

Итак, визуально мы наблюдаем наличие модальных групп в строках, кроме последней. Если бы в нашей таблице число строк равнялось числу столбцов, например, не было бы историков, то коэффициент был бы равен 1, а таблицу можно было бы перестановкой столбцов превратить в такую, в которой только диагональные элементы отличались бы от нуля. Таким образом, по значению коэффициента можно судить о степени отличия реальной таблицы от диагональной. В случае, когда значение коэффициента равно 1, вероятность статистического предсказания (У) по X максимальная. Такой случай практически в социологических исследованиях не встречается.

3. Значение коэффициента равно нулю в нескольких случаях. Первый ¾ все частоты сосредоточены только в одной строке. На самом деле знание признака X нечего не дает для увеличения знания об У. Второй случай ¾ отсутствие феномена модальности, т. е., условно говоря, полная «размытость» данных в таблице. По таблице 3.5.1 мы получили значение, близкое к нулю и равное 0,05. Практически модальность не наблюдается. И наконец, третий случай, когда все частоты сосредоточены только в одном столбце.

Этот случай заслуживает особого внимания, ибо противоречит основному содержанию коэффициента. Если данные сосредоточены в одном столбце, то естественно модальные классы существуют. Тогда и вероятность предсказания значения У по значению X должна быть равна единице. А наш коэффициент равен нулю. Здесь мы наблюдаем ситуацию, когда коэффициент плохо ведет себя в нуле. Запомните эту фразу. Вы будете встречаться с подобными фразами и в случае других коэффициентов. Чтобы исключить неверную интерпретацию нулевого значения, необходимо по одномерному распределению уточнить, не сосредоточены ли данные только в одном столбце. Такой случай также не встречается в социологической практике.

Представляется важным отметить, что в реальных исследованиях значения коэффициента Гуттмана очень малы и использовать их нужно так же, как и многие другие коэффициенты в сравнительном контексте, например, для ранжирования как бы независимых между собой признаков по степени их влияния на некоторый особенно важный для исследователя признак, обозначаемый как целевой, зависимый. Если такого нет, то направленные коэффициенты «лямбда» использовать не имеет особого смысла.

из 225
Предыдущая    Следующая
 
Реклама
Авторизуйтесь