§ библиотека мастерская Помощь Контакты Вход —

Цветкова Л.С. Нейропсихологие счета, письма и чтения: нарушение и восстановление

В каталоге: Логопедия
Прислано в библиотеку: kores80
Стр. 23

Благодаря объективизации понятия числа современному человеку для овладения этим понятием не нужно проходить весь исторический путь его развития. Поэтому мы считаем, что деятельность по овладению разрядно-позиционной системой счисления есть деятельность, продуктом которой является понятие числа. Решающее значение для такого вывода имеет тот факт, что в процессе обучения дети могут овладеть системой счисления и понятием числа только с помощью взрослого человека. Деятельность по овладению системой счисления и понятием числа развивается так же, как и все другие высшие психические функции, постепенно в процессе интериоризации приобретая «умственную» и сокращенную форму, «свернутый» характер которой не позволяет видеть ее сложную структуру. Ж. Пиаже по этому поводу писал: «Основополагающие свойства числовой системы, природа и поведение чисел настолько глубоко укореняются, что среднему взрослому человеку они кажутся очевидными».(СНОСКА: Пиаже Ж. Представления ребенка о числе. М: Просвещение, 1965.)

В истории учения о методах обучения арифметике также отмечаются разные взгляды на понятие числа и соответственно на методы обучения счислительным операциям. Одно из таких воззрений, на базе которого был реализован так называемый метод изучения чисел, связано с пониманием числа как чего-то созерцаемого, чего-то, что может быть представлено. В данном методе для овладения понятием числа предлагалось заучивать числовой ряд (такого взгляда придерживался, например, немецкий методист А.В. Грубе).

Сторонники другого, противоположного направления (в частности, А.И. Гольденберг) утверждали, что преподавание арифметики должно переходить не от «числа к числу», а от действия к действию. По их мнению, понятие числа, как и каждое понятие, не подлежит ни созерцанию, ни представлению. Очень важный аргумент против метода изучения чисел, приведенный Д.Д. Галаниным, состоит в том, что факт, удержанный памятью как простое запоминание состава числа, является неподвижным, не способен ни к деформации, ни к развитию.

из 257
Предыдущая    Следующая
 
Реклама
Авторизуйтесь