§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Готтсданкер Р. Основы психологического эксперимента: Учеб. пособие. Пер. с англ. —— М.: Изд-во Моск. ун-та, 1982. — 464 с.
Стр. 244 Эффект центрации. Другой эффект ряда был продемонстрирован в эксперименте Дж. Е. Кеннеди и Дж. Ландесмана (1963). Они провели два эксперимента, каждый по схеме латинского квадрата с двумя группами испытуемых. Задачей была токарная обработка деталей, независимой переменной являлась высота работ чей поверхности. Диапазон уровней в одном эксперименте пересекался с диапазоном уровней в другом. Независимой переменной служила высота рабочей поверхности. Зависимой переменной было среднее число деталей, обработанных в течение 3-минутной пробы. Рис. 7.7. Отношение между высотой рабочей поверхности и количеством обработанных деталей (Кеннеди и Ландесман, 1963). Ось абсцисс — высота рабочей поверхности (в дюймах, ниже (—) или выше ( + ) локтя). Ось ординат — среднее количество обработанных деталей. Пунктирная линия — условие А, сплошная — условие Б На рис. 7.7 отдельно для каждой группы показаны средние количества обработанных деталей. Интересно, что испытуемые в условии А, где наименьший уровень равнялся 45 см, обнаружили наибольшую продуктивность при 15 см, в то время как испытуемые в условии Б работали на этом уровне относительно плохо. Эта вторая группа, для которой наименьшим был уровень 25 см, показала наилучшие результаты при уровне -5 и +5 см. В этом эксперименте, таким образом, наиболее благоприятными оказались уровни, близкие к середине ряда, а не к его краям. Это были как раз, те единственные уровни, которым в последовательностях предшествовали как более низкие, так и более высокие уровни. Вы, конечно, можете сказать, что эти средние уровни казались для испытуемых «типичными» и поэтому наиболее удобными. Однако ваше объяснение имеет столько же оснований, сколько и мое. Ясно только одно: в этих опытах обнаружил себя эффект центрации. Схемы полного позиционного уравнивания я латинского квадрата, в отличие от схемы реверсивного уравнивания, не требуют такого сильного допущения, как однородность переноса от одной позиции к следующей за ней. Однако в них сохраняется допущение, что отношение между настоящим и предшествующими уровнями не играет роли. Целый же ряд данных опровергает это (Поултон, 1973). Оказывается, важно, какие уровни в основном предшествуют: более низкие, более высокие или смешанные. |
Реклама
|
||