§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Готтсданкер Р. Основы психологического эксперимента: Учеб. пособие. Пер. с англ. —— М.: Изд-во Моск. ун-та, 1982. — 464 с.
Стр. 213 СТАТИСТИЧЕСКОЕ ПРИЛОЖЕНИЕ: t-КРИТЕРИЙ
В данном приложении будет описан метод нахождения величины различия между средними, необходимой для отвержения нуль-гипотезы. Фактически мы будем подробно объяснять диаграммы, представленные на рис. 6.1. Выборочное распределение Давайте еще раз предположим, что данные по времени реакции, представленные в предыдущих статистических приложениях, получены в межгрупповом эксперименте. Мы, таким образом, имеем среднее время реакции для каждого из 17 испытуемых, которым предъявлялось условие А (свет), и среднее время реакции для каждого из 17 испытуемых, которым предъявлялось условие Б (тон). Более того, известно общее среднее для испытуемых в условии А (185 мс) и общее среднее в условии Б (162 мс). Наконец, мы знаем разницу между этими двумя средними, МА—Мб, равную. +.23 мс. Если бы исследовались две другие группы испытуемых, отобранные тем же способом, то, конечно, не следовало бы ожидать МА—Мб в точности равной 23 мс. Нельзя было бы ожидать точно такой же разницы + 23 мс и в третьем эксперименте. Напротив, мы предполагаем, что это значение МА—Мб будет несистематически варьировать от эксперимента к эксперименту. Допустим, что путем повторения этого эксперимента был реализован бесконечный эксперимент, при котором каждое условие предъявлялось 17 испытуемым бесконечное число раз. Предположим далее, что нуль-гипотеза верна. Тогда различие между общими средними — которое есть параметр — должно равняться нулю. Другими словами, М̅А—М̅б=0. Однако величина статистики МА—Мб должна варьировать от эксперимента к эксперименту. Распределение величин МА—Мб для серии последовательных экспериментов может быть представлено так, как было описано ранее. Обозначим величину +23, которая была получена в реальном эксперименте, номером 1; предположим, что мы провели второй такой же эксперимент и получили величину — 4, обозначим ее номером 2; величину, полученную в третьем эксперименте (допустим, 0), — номером 3 и т. д. Таким образом, результаты девяти экспериментов, в случае МА—Мб = 0, могли бы выглядеть следующим образом. |
Реклама
|
||