§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Талызина Н. Ф. Педагогическая психология: Учеб. пособие для студ. сред. пед. учеб. заведений. -- М.: Издательский центр «Академия», 1998. - 288 с.
Стр. 194 3. Правило работы с мерой: а) при измерении протяженности выбор точки, от которой начинается измерение; б) обозначение конечной точки каждого отмеривания; в) в случае сыпучих тел - насыпание до краев. 4. Выкладывание метки после каждого измерения. (Если при последнем измерении мера не укладывается полностью - остается остаток.) При выполнении каждого измерения учащиеся производят не только практические измерения, но и обязательно проговаривают, с чего они будут начинать измерение, как его будут производить, фиксировать его результат и т.д. После освоения действия измерения учащиеся усваивают действие сравнения двух величин. Здесь учащиеся осваивают действие установления взаимно-однозначного соответствия между двумя множествами. Необходимо показать, что сравнивать величины можно только в том случае, когда они измерены одной и той же мерой. Предлагается, например, сравнить по объему две чашки крупы, которые резко различаются по величине. При этом крупу в маленькой чашке надо измерить маленькими чайными ложками, а в большой - большими столовыми. Дети получают два ряда меток, приводят их во взаимно-однозначное соответствие и видят: по меткам оказывается, что в маленькой чашечке крупы больше. Но очевидно, что это не так. И вот тут выясняется, почему получен неверный результат. Можно использовать и такие величины (например, длину ленточек), которые не равны, а измерение разными мерами одно и то же число меток, т.е. получается, что ленточки одинаковой длины, а на самом деле они разные по длине. Ошибка очевидна. В дальнейшем это условие выполняется детьми очень строго. Формирование понятий равно, не равно, больше, меньше идет успешней, если учитель предлагает не абстрактные задачи, не скучные отрезки и площади сами по себе, а облекает их в задачи, интересные для детей шести-семи лет. Например, учитель предлагает сравнить по длине дорожки, по которым бегают зверьки к ручейку пить. Дети могут разоблачить с помощью измерения хитрую лису, которая нечестно делила крупу с медведем и т. д. Результат каждого сравнения, производимого детьми практически, руками, предстает перед ними в наглядном виде. Так, например, сравнивая по длине дорожки ежика и мышки, дети поучили такой результат: Е
М Очевидно, что дорожка ежика длиннее на три мерочки. Постепенно дети учатся записывать полученные результаты на математическом языке («переводят» на математический язык), употребляя буквы и математические знаки, отношения между двумя множествами (=, =, >, <). |
Реклама
|
||