§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Истомина Н. Б. Активизация учащихся на уроках математики в начальных классах: Пособие для учителя. –– М.: Просвещение, 1985. - 64 с., ил.
Стр. 7 Задания на выявление какой-либо закономерности на основе наблюдений, так же как, и задания на выявление различного и сходного, требуют от учеников выполнения самых разнохарактерных действий: владения вычислительными навыками, понятиями, умением наблюдать, анализировать. Но в отличие от заданий предшествующего вида, где ученику прямо указывается способ выполнения задания (надо найти различное и сходное), в заданиях данного вида такое указание отсутствует. Ученик самостоятельно должен прибегнуть к наблюдению, проанализировать полученные данные и обобщить их. Например: — Как изменяется сумма в данных примерах? Как изменяется слагаемое? 17+9 = 26, 17+10 = 27, 17+11 = 28, 17+12 = 29. (Чтобы ответить на вопрос, как изменяется?, нужно прибегнуть к сравнению, только тогда можно установить закономерность изменения суммы) — По какому правилу записан ряд чисел? Продолжите этот ряд: 10, 12 14, 16, 18, 20, 22,.... — Перепишите числа в порядке возрастания. Вставьте недостающие числа, чтобы каждое следующее было на 2 единицы больше предыдущего: 17, 21, 13, 25. Задания, выполнение которых основано на косвенном применении правила помимо различных видов деятельности, указанных в предыдущих заданиях, требуют от ученика еще и некоторой сообразительности, которая обусловливается системой знаний, сложившейся у ученика, а также его общим развитием. Поэтому задания этого вида представляют для ученика большую сложность, чем предшествующие. Например: — Можно ли сказать, не вычисляя, будет ли значение выражений в каждом столбике одинаковым? (17+3)+7 (18+9)+2 (3+7) + 17 (18+2)+9 (17+7)+3 (10+2) + 18 — На сколько 44 меньше 81? 44+х=81. На сколько сумма меньше неизвестного числа? 18+х=24. Задания на выяснение причинно-следственных связей мы ставим на самую высокую ступень, так как для их выполнения ученик должен привести ряд логических рассуждений и сделать из них определенные выводы, которые и явятся обоснованием выполняемых действий. Этот вид заданий тесно связан с предыдущим, но требует от ученика более связного и точного выражения мыслей в слове. — Почему изменяется значение суммы? 13+7 = 20 13+9=22 13+11=24 13+13 = 26 — Могут ли значения неизвестного быть одинаковыми в уравнениях? Объясните свой ответ: х+13=26 х+14 = 26 — В каком уравнении значение неизвестного будет больше? Почему? х+14 = 30 х+19 = 30 Ориентировка на вышерассмотренные виды позволяет все многообразие заданий по математике использовать в их усложняющейся последовательности, что способствует проявлению разнообразной деятельности учащихся и оказывает положительное влияние на их развитие. Помимо указанных видов заданий можно назвать и некоторые признаки, руководствуясь которыми можно усложнять задания каждого вида. Это число соотносимых данных в условии задания, число взаимосвязей, которые должен установить ученик в ходе выполнения задания, возможность нескольких вариантов выполнения задания. Таким образом, в основе выделения видов учебных заданий лежит изучение мыслительной деятельности школьников. Это, вероятно, самый эффективный путь сделать учебные задания не только средством усвоения знаний, умений и навыков, но и средством развития учащихся. |
Реклама
|
||