§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001. —— 408 с.: ил. — (Коррекционная педагогика)
Стр. 51 Другой пример: «Сравнить два числовых выражения: (37+13Ь2 = 100 и 37+13-2=63. Выполнить действия, нить, почему получились разные ответы». 52 Сравнение требует от учащихся постоянного сопоставления штов, их анализа и, следовательно, активной мыслительной деятельности. Как сказано выше, учащиеся нередко производят сравнение по несопоставимым признакам, с трудом устанавливают черты сход-< та и различия. Поэтому учеников необходимо учить сравнивать. 11л первых порах учитель направляет процесс сравнения своими Сначала он ставит много вопросов, направленных на понимание содержания задач, постепенно число их сокращается. Полезно разобрать определенные схемы сравнения чисел, величин, геом Например, нужно сравнить два числа: 375 и 375 000. Учитель вывешивает таблицу: «Прочитай первое число. Прочитай мгорое число. Сколько цифр в первом числе? Как называется ыкое число? Сколько цифр во втором числе? Как оно называется? 1 колько классов в первом числе? Сколько классов во втором числе? Как называются эти классы? Сколько разрядов в первэм теле? Сколько разрядов во втором числе? Какими цифрами запи-1 ано первое число? Какими цифрами записано второе число? Четное или нечетное первое (второе) число? В чем различие этих чисел? В чем сходство этих чисел?» Постепенно учитель сокращает число вопросов: «Прочитай числа. Обрати внимание на их запись. Сколько знаков в каждом числе? Сколько классов и разрядов в каждом числе? В чем различие этих чисел? В чем их сходство?» Схема — алгоритм сравнения чисел (для 6—7-х классов)
В специальной (коррекционной) школе VIII вида, как от анализ педагогического опыта, при обучении математике чаще псего используется индуктивный путь познания. Этот путь познания больше ориентирован на особенности развития мышления умственно отсталых учащихся. Поэтому многие математические понятия, свойства геометрических фигур, математические операции, свойства отношений изучаются опытным путем. Происходит обращение к конкретным операциям с предметными совокупностями при формировании знаний о числе и арифметических действиях, использование моделей фигур и чертежей при изучении свойств фигур, обращение к краткой форме записи содержания задач, схеме, чертежу и пр. |
Реклама
|
||||||||||||||||||