§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001. —— 408 с.: ил. — (Коррекционная педагогика)
Стр. 43 При сообщении новых знаний, пользуясь методом изложения знаний или методом беседы, учитель широко использует наблюдения учащихся, дидактического материала, арифметических записей и т. д. В отдельных случаях на уроках математики сами наблюдения могут служить ведущим методом в сочетании с методом изложения знаний или беседы. Используя метод наблюдения, учитель так организует познавательную деятельность учащихся, что им становится доступным самостоятельно сделать обобщения, выводы. Например, учащимся 4-го класса на основе наблюдений доступно сделать вывод об умножении числа на 10. Учитель записывает столбик примеров на умножение на 10 и просит решить их, заменив умножение сложением: 4-10=4+4+4+4+4+4+4+4+4+4=40 7-10=7+7+7+7+7+7+7+7+7+7=70 6-10=6+6+6+6+6+6+6+6+6+6=60 4-10=40 7-10=70 6-10=60 решения примера учитель просит сравнить множитель 4 и произведение 40. Какое число умножали? Какое число получили после умножения на 10? Какую цифру приписали справа к первому множителю? Аналогично сравниваются множитель и произведение остальных числовых выражений. Учащиеся подводятся к выводу: «При умножении на 10 произведение можно получить из первого множимм, если к нему приписать один нуль справа». Обобщение учарси сделали на основе наблюдения умножения однозначного ( ла на 10. Учитель подтверждает, что этот вывод ч умножения любого числа на 10. Метод наблюдения в сочетании с предметно-практической ш.постью самих учащихся широко используется и при (метрического материала. Например, при знакомстве со свойст-мнми углов и сторон прямоугольника (3-й класс) учитель исполь-яует такой способ: раздает каждому ученику по 2—3 модели этой фигуры разных размеров, просит измерить углы и стороны и запи-сить результаты измерений. Когда практическая работа закончена, он спрашивает, что ученики могут сказать об углах своих прямоугольников. Ученики подмечают, что во всех прямоугольниках все углы прямые. Самостоятельно формулируют правило: «У прямоугольника все углы прямые». Аналогично учащиеся подводятся к самостоятельному выводу о свойствах сторон прямоугольника. |
Реклама
|
||