§ библиотека мастерская Помощь Контакты Вход —

Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001

В каталоге: Дефектология
Прислано в библиотеку: VikaHaba
Стр. 284

Допустим, что при измерении карандаша или полоски получилось 10 см, или 1 дм. Вспомним, что в 1 м содержится 10 дм (показать метр, разделенный на дециметры). Следовательно, -г^ м, или 10 см=-гтг м; 5 дм=50 см=-гтг м; 50 см=~2 метр разделить пополам, то получится -ям, или 50 см). 1 м разделить на 4 равные части, то получится -^ м;

1ащимся следует на доступных примерах показать, что дроби по-этся не только при нахождении длины, но и при измерении вре-стоимости, при взвешивании, при измерении жидкостей и т. д., упражняться в записи этих чисел обыкновенными дробями, шер: 30 мин=-2 ч; 1 ДМ=-щ м; 2 ДМ=-^ м; 1 к.=^щр.; ШТ кг; 50° г=4 кгкольники с нарушением интеллекта при выполнении деления с чисел не раз убеждались, что не все числа делятся нацело, т получиться в частном остаток; деление же меньшего целосла на большее целое невозможно. В то же время в повсе-юй жизни они делили 3 яблока на 5 человек, 2 булочки на и равные части и т. д. Используя жизненный опыт учащихся, нужно показать, что при делении целого числа на целое получается дробь. При этом деление возможно даже тогда, когда делимое меньше делителя.

Объяснить получение обыкновенной дроби путем деления целого на целое необходимо путем решения задачи жизненно-практического содержания. Например, нужно разделить две конфеты между тремя мальчиками. Как это сделать? Возьмем одну конфету и разделим ее на 3 равные части. Каждый получит по -у доле. Затем вторую конфету разделим тоже на 3 равные части. Каждый получит еще по ^ доле. Сколько же получил каждый мальчик? Каждый мальчик получил по •? конфеты (ученики это должны видеть). Запишем: 2:3=-д-.

Со сравнением дробей можно познакомить учащихся, широко используя их знания и опыт в получении дробей путем деления целого предмета (единицы) на равные части. Берем яблоко, делим его на 4 равные доли. Сравним -т долю яблока и -у. Что больше: 12 21 -т или -т-? Учащиеся наглядно убеждаются в том, что -г > -г. Так же сравниваются т и т; т и тУчитель обращает внимание на знаменатели и числители сравниваемых дробей. Учащиеся, набл1< убеждаются, что среди дробей с одинаковыми знаменатс дробь с большим числителем оказывается ббльшей.

из 386
Предыдущая    Следующая
 
Реклама
Авторизуйтесь