§ библиотека мастерская Помощь Контакты Вход —

Перова М.Н Методика преподавания математики в специальной (коррекционной) школе VIII вида — М.: Гуманит. изд. центр ВЛАДОС, 2001

В каталоге: Дефектология
Прислано в библиотеку: VikaHaba
Стр. 282

ПОЛУЧЕНИЕ ДРОБЕЙ

Первое представление о доле, которая получается путем делении целого предмета на равные части, учащиеся должны получить в 5-м классе школы VIII вида.

Прежде чем начать деление целого на равные части, нужно шдать такую ситуацию, при которой учащиеся могли бы убедить-• н в необходимости выполнения этой операции. Например, дав узнику одно яблоко, учитель говорит: «У тебя только одно яблони К тебе пришел товарищ, и ты хочешь вместе с ним съесть нГ)локо. Как в этом случае ты поступишь?» Ученик отвечает: «Яблоко нужно разделить (разрезать) пополам». Учитель поясняет: «Разрезать пополам — это значит разрезать на две равные 'мсти». В результате такого деления получаются две половины, пли две вторые доли.

Далее надо, чтобы учащиеся сами производили деление целого (конфеты, яблока, батона хлеба, ленты, листа бумаги и т. д.) на две равные части. Целое можно на равные части разрезать, перегнуть, разломить и т. д., т. е. получить равные части разными способами. Учащиеся должны убедиться, что при делении целого на две равные части его вторые доли, или половины, равны, половины, полученные от деления разных целых, не равны. Для этого, например, учитель дает одному ученику большой синий круг, а другому — красный меньшего размера и просит разделить эти круги на две равные части. Затем он задает вопросы: «Сколько половин получилось? Равны ли между собой половины одного круга? Покажите, что половины (вторые доли) каждого круга равны (учащиеся накладывают половины круга). Сравните половины синего и красного кругов. Половина какого круга больше? Почему?»

Учащиеся должны хорошо понимать, что часть зависит от целого. Если предмет разделен на равные части, то эти части равны, но доли разных предметов, хотя эти предметы и были разделены на то же количество частей, не равны. Поэтому если целые предметы не равны, то не равны и их части. Половины одного предмета не только сравниваются, но и прикладываются друг к другу, в результате чего учащиеся убеждаются, что при этом снова получается целый предмет.

из 386
Предыдущая    Следующая
 
Реклама
Авторизуйтесь