§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Щербакова Е. И. Теория и методика математического развития дошкольников: Учеб. пособие / Е. И. Щербакова. —— М.: Издательство Московского психолого-социального института; Воронеж: Издательство НПО «МОДЭК», 2005. - 392 с.
Стр. 135 Важным направлением в подготовке дошкольников к вычислительной деятельности является деление целого на части. С необходимостью деления множества, а также отдельного предмета на части дети неоднократно сталкиваются в быту, во время игр. Так, им не раз приходилось делить между собой игрушки, сладости (конфеты, печенье), покупать в магазине часть (половина, четверть) хлеба, делить грядки на отдельные участки и т. д. Деление целого предмета или множества на несколько равных частей дает возможность познать ряд закономерностей в вещах и явлениях, способствует формированию логического мышления, развитию умения находить причинно-следственные связи, позволяет по результатам работы делать вывод об исходных данных и т. п. Хотя дети очень рано практически делили множество на части (отдельные элементы), а также выполняли обратные действия — из отдельных элементов (частей) создавали целое множество, перед ними только ставилась задача определить количество элементов (фактически частей) в данном множестве и не рассматривались, а потому и не осознавались отношения части к целому. Позднее, при ознакомлении детей с количественным составом чисел первого десятка, основное внимание уделялось именно пониманию детьми отношения единицы (как части) к числу (как целому). Однако педагогический опыт показывает, что без целенаправленного обучения делению на части у детей не формируются четкие представления о целом и его частях, об отношениях части к целому, о связях между частями (равные и неравные) и т. п. Процесс ознакомления детей с делением целого на части состоит из таких компонентов: деления множества на подмножества, практического деления предмета на части путем складывания, разрезания, на основе измерения и получения целого из частей, т. е. установления отношений части и целого. Сначала воспитатель показывает детям, что множества могут быть однородными и неоднородными, состоящими из двух-трех частей. Эти части можно объединять. Например, зайчиков и медведей дети воспринимают и считают как два самостоятельных множества (две совокупности, группы). «Сколько зайчиков? Сколько медведей? Чего больше? Чего меньше? Как одним словом можно назвать и зайчиков, и медведей? Правильно, это игрушки». Итак, воспитатель подводит детей к тому, что количество отдельных небольших множеств можно объединять в одно большое множество. Это последнее множество называется целым, а первичные (небольшие) множества — частями этого целого. Целое всегда больше, чем любая его часть (даже самая большая). |
Реклама
|
||