§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Фейгенберг И.М. МОЗГ ПСИХИКА ЗДОРОВЬЕ АКАДЕМИЯ НАУК СССР Серия «Проблемы современной науки и научно-технического прогресса». -- М.: «НАУКА», 1972
Стр. 61 В очерке «Быстрота реагирования» мы уже писали, что при случайной последовательности сигналов, вероятность которых одинакова, время реакции растет с увеличением их числа. Однако странным казался тот факт, что удлинение времени реакции происходит лишь при увеличении числа таких сигналов до десяти. Дальнейшее увеличение (в некоторых экспериментах число различных сигналов превышало тысячу) не ведет к еще большему удлинению времени реакции. Это явление может быть понято, если предположить, что преднастроика осуществляется лишь по отношению к действиям, адекватным такой ситуации, возникновение которой прогнозируется с вероятностью, превышающей некоторую минимальную величину Ро. Величина Ро играет роль абсолютного порога вероятностного прогноза. К ситуациям, появление которых прогнозируется с вероятностью меньшей, чем Ро, преднастроика не осуществляется. Если Ро^'/ю (а из экспериментальных данных вытекает, что это примерно так), то при наличии равновероятных сигналов вероятностный прогноз достигает пороговой величины Ро лишь при числе сигналов до десяти, при большем числе сигналов вероятностный прогноз появления каждого из них меньше порогового. Если же сигналы возникают с неодинаковой вероятностью, то среди них могут оказаться и сигналы с Р > '/ю, но число их (независимо от общего числа сигналов) всегда будет меньше десяти. А это значит, что как бы велико ни было число возможных сигналов, при наличии порога Ро организм упрощает ситуацию так, как будто число их не больше чем 1/Ро, (т. е. в приводимом примере не больше десяти). Наличие порога Ро позволяет при большом общем числе возможных событий принимать во внимание лишь небольшую часть (не более 1/Ро) наиболее вероятных из них (рис. 14). Различие в преднастройке к действиям на сигналы наблюдается лишь тогда, когда различие прогнозируемой вероятности появления этих сигналов достаточно велико, больше некоторого АР — дифференциального вероятностного порога. В частности, для выработки условного рефлекса не необходима выработка прогноза с Р = 1 (такая ситуация практически недостижима даже в эксперименте); необходимо, чтобы прогнозируемая вероятность подкрепления была достаточно близкой к единице (Р^ 1 —АР). |
Реклама
|
||