§ библиотека мастерская Помощь Контакты Вход —

Поддьяков А.Н. Исследовательское поведение: стратегии, познания, помощь, противодействие, конфликт. М.: Эребус, 2006.

В каталоге: Психология
Прислано в библиотеку: Рина55
Стр. 17

Ограничения познания реальных сложных систем

При работе со сложными системами были выявлены принципиальные ограничения возможностей описания их актуального состояния, реконструкции их прошлого и предсказания будущего. Первые утверждения подобного рода были доказаны в термодинамике и квантовой механике. В термодинамике была показана необратимость времени и невозможность восстановить предшествующую траекторию движения системы в пространстве состояний (невозможность однозначно восстановить ее "историю"). В квантовой механике В.Гейзенберг сформулировал принцип неопределенности: невозможно определить и координаты, и импульс микрочастицы. Измеряя что-то одно, мы теряем возможность измерить другое. Н.Бор сформулировал принцип дополнительности, отражающий дуализм (двойственность) "волна – частица": описание поведения микрочастиц как корпускул является недостаточным, оно должно быть дополнено альтернативным волновым. В течение ХХ века эти принципы были осмыслены философией, а также обобщены в новых и интенсивно развивающихся так называемых нелинейных науках, науках о сложном, науке о самоорганизации сложных динамических систем (синергетике).

В этих науках также было показано, что принципиальные ограничения касаются не только возможностей познания настоящего и прошлого системы. Аналогично, "существует горизонт прогноза. Это такое же серьезное препятствие в исполнении наших желаний, как скорость передачи сигналов или невозможность создания вечного двигателя" [Малинецкий, Потапов, 1998, с. 23]. В чем причины этого ограничения прогностических возможностей?

Когда система по внутренним или внешним причинам приходит в состояние неустойчивости, она становится чрезвычайно чувствительной к малейшим, ранее несущественным воздействиям. Эти системы так и называются – чувствительные [Глой, 1994]. В математических моделях этих систем бесконечно малые воздействия в точках бифуркации (точках неустойчивости и выбора дальнейшего пути) приводят к бесконечно большим отклонениям траектории движения в пространстве состояний. Так, две системы-близнецы, двигаясь по одной и той же траектории до точки бифуркации, после нее под влиянием двух бесконечно мало различающихся друг от друга воздействий отправляются по разным траекториям и расходятся на бесконечно большое расстояние.

из 264
Предыдущая    Следующая
 
Реклама
Авторизуйтесь