§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Щедровицкий Г. П. Процессы и структуры в мышлении. Курс лекций - М.: "Путь", 2003
Стр. 68 Меня сейчас интересует, где и в каких пределах можно членить на единицы. Оказывается, что непременным условием такого членения является, по сути дела, проецирование рассматриваемого явления на прямую и, фактически, моделирование структурных отношений самого объекта и формально-логических отношений между свойствами целого и частей в этой линии и ее пространственно-материальной структуре. Кстати, если вы рассмотрите с точки зрения этого различения многие дискуссии современной микрофизики, то они покажутся вам удивительно наивными и безграмотными. Между прочим, еще древние греки хорошо понимали формальную сторону подобных процедур членения и умели отделять то, что задано природой самого объекта от того, что задается и определяется формальными средствами нашего изображения. В нашей современной терминологии это прежде всего различение объекта и предмета исследования. Кстати, О.Генисаретский сказал мне недавно, что в "Фейнмановских лекциях" фактически ставится вопрос об этом различии, хотя и нет необходимого решения. Это тем более удивительно, что уже древние умели решать подобные проблемы, во всяком случае в плане указанного выше разделения формальных и содержательных моментов. Именно в этом плане сейчас приобрели важное значение и, по сути дела, обрели новую жизнь классические апории древних. Нетрудно заметить, что многие из этих апорий были, по сути дела, постановкой вопроса о том, насколько далеко можно продолжать одну и ту же операцию деления, оставаясь в пределах единиц и не переходя к элементам. Знаменитые предельные переходы геометрии и дифференциально-интегрального исчисления своим важнейшим моментом имели ту же самую проблему и были особым ее решением. Фактически, при анализе этих апорий задавались, с одной стороны, возможность (постулированная совершенно формально) членения отрезка бесконечно с сохранением отношений единицы между целым и частями, а с другой – необходимость перехода к элементам, т.е. к образованиям, содержащим уже другие свойства и теряющим свойства целого. Именно это и составляло суть проблем этого рода. И это можно отчетливо понять, если рассмотреть с этой точки зрения галилеевские "Беседы", в частности обсуждение вопроса о существовании пустоты. При этом древние допускали очень много неточностей и ошибок с операциональной точки зрения. |
Реклама
|
||