§ библиотека мастерская Помощь Контакты Вход —

Ивин А.А. Логика: Учебник для гуманитарных вузов

В каталоге: Разное
Прислано в библиотеку: Gallaxy
Стр. 187

Из подчиняющего высказывания логически следует подчинённое:

Все S есть Р.

Некоторые S есть Р.

Из высказывания «Все люди дышат лёгкими» непосредственно вытекает высказывание «(По меньшей мере) некоторые люди дышат лёгкими».

Все S не есть Р.

Некоторые S не есть Р.

Из высказывания «Все тигры не птицы» непосредственно вытекает высказывание «Некоторые тигры не птицы».

3. Категорический силлогизм

Категорический силлогизм (или просто: силлогизм) – это дедуктивное умозаключение, в котором из двух категорических высказываний выводится новое категорическое высказывание.

Логическая теория такого рода умозаключений называется силлогистикой. Она была создана ещё Аристотелем и долгое время служила образцом логической теории вообще.

В силлогистике выражения «Все… есть…», «Некоторые… есть…», «Все… не есть…» и «Некоторые… не есть…» рассматриваются как логические постоянные, т.е. берутся как единое целое. Это не высказывания, а определённые логические формы, из которых получаются высказывания путём подстановки вместо многоточий каких-то имён. Подставляемые имена называются терминами силлогизма.

Существенным является следующее традиционное ограничение: термины силлогизма не должны быть пустыми или отрицательными.

Примером силлогизма может быть:

Все жидкости упруги.

Вода – жидкость.

Вода упруга.

В каждом силлогизме должно быть три термина: меньший, больший и средний.

Меньшим термином называется субъект заключения (в примере таким термином является термин «вода»).

Большим термином именуется предикат заключения («упруга»). Термин, присутствующий в посылках, но отсутствующий в заключении, называется средним («жидкость»). Меньший термин обозначается обычно буквой S, больший – буквой Р и средний – буквой М. Посылка, в которую входит больший термин, называется большей. Посылка с меньшим термином называется меньшей. Большая посылка записывается первой, меньшая – второй. Логическая форма приведённого силлогизма такова:

из 332
Предыдущая    Следующая
 
Реклама
Авторизуйтесь