§ библиотека мастерская Помощь Контакты Вход —

Гусев А. Н., Измайлов Ч.А., Михалевская М.Б. Измерение в психологии: общий психологический практикум. / 2-е изд

В каталоге: Психология
Прислано в библиотеку: a5720g
Стр. 150

Напомним, что главная цель выделения первичных факторов в разведочном ФА состоит в определении минимального числа общих факторов, которые удовлетворительно воспроизводят (объясняют) корреляции между наблюдаемыми переменными. Основная стратегия при выделении факторов незначительно отличается в разных методах. Она заключается в оценке гипотезы о минимальном числе общих факторов, которые оптимально воспроизводят имеющиеся корреляции. Если нет каких-либо предположений о числе факторов (в ряде программ оно может быть задано прямо), то начинают с однофакторной модели. Эта гипотеза о достаточности одного фактора оценивается с помощью используемого критерия оптимальности соответствия данной однофакторной модели исходной корреляционной матрице. Если расхождение статистически значимо, то на следующем шаге оценивается модель с двумя факторами и т. д. Такой процесс подгонки модели под данные осуществляется до тех пор, пока с точки зрения используемого критерия соответствия расхождение не станет минимальным и будет оцениваться как случайное. В современных компьютерных статистических программах используются различные методы факторизации корреляционной матрицы. Нам представляется, что, хотя для исследователя данная проблема не представляет прямого интереса, тем не менее она важна, поскольку от выбора метода факторизации в определенной мере зависят результаты расчета факторных нагрузок. В силу специфики нашего изложения основ ФА мы ограничимся лишь перечислением этих методов, снабдив его очень краткими комментариями и отошлем читателя для более глубокого знакомства к специальной литературе, требующей некоторых познаний в математике (Дж. Ким, Ч. Мьюллер, 1989):

Метод главных факторов (или главных осей) — наиболее старый и часто используемый в различных предметных областях.

Метод наименьших квадратов сводится к минимизации остаточной корреляции после выделения определенного числа факторов и к оценке качества соответствия вычисленных и наблюдаемых коэффициентов корреляции по критерию минимума суммы квадратов отклонений.

из 192
Предыдущая    Следующая
 
Реклама
Авторизуйтесь