§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Готтсданкер Р. Основы психологического эксперимента: Учеб. пособие. Пер. с англ. —— М.: Изд-во Моск. ун-та, 1982. — 464 с.
Стр. 256 Мы можем сделать две оценки параметра — σ̅2х по данным нашего эксперимента, снова допуская нуль-гипотезу Μ̅1 = Μ̅2 = Μ̅3 = Μ̅4. Одна из оценок основана на учете вариаций времени реакции среди испытуемых по всем уровням. Внутригрупповая вариация представляет собой просто объединение вариаций по всем уровням. Другая оценка определяет, насколько отдельные групповые средние отличаются от общего среднего эксперимента Μ1+2+3+4· Таким образом, существует внутригрупповая оценка σ̅2х и межгрупповая оценка σ̅2х.
Выборочное распределение F-критерия Если верна нуль-гипотеза, то при достаточно длинной выборке оценки σ̅2х должны быть идентичны. В бесконечном эксперименте средняя оценка по межгрупповой вариации будет равна средней оценке по внутригрупповой вариации. В каждом отдельном эксперименте, включая рассматриваемый здесь эксперимент, мы те должны ожидать точного совпадения этих оценок. В одном эксперименте две эти оценки могут быть больше похожи, в другом — меньше. Когда две величины идентичны, их отношение равно 1: Это отношение обозначается как F. В вышеприведенном выражении показан случай, когда F=l. Если нулевая гипотеза неверна, разность между средними для различных уровней будет намного больше, чем та, которую можно было бы объяснить несистематической вариацией данных. Межгрупповая оценка будет больше, чем внутригрупповая оценка; F будет больше 1. Однако можно ожидать, что отношение F от эксперимента к эксперименту будет отличаться от 1, даже если средняя величина равна 1 (как это предполагается нуль-гипотезой). Распределение величин F в бесконечном ряду экспериментов при допущении верности нуль-гипотезы является еще одним выборочным распределением. Это распределение можно представить так же, как распределение для t. Для примера приводится рис. 7.9. |
Реклама
|
||