§ | библиотека – мастерская – | Помощь Контакты | Вход — |
Готтсданкер Р. Основы психологического эксперимента: Учеб. пособие. Пер. с англ. —— М.: Изд-во Моск. ун-та, 1982. — 464 с.
Стр. 201 Для данной совокупности экспериментальных результатов уменьшение альфа-уровня означает увеличение бета-вероятности для любой ненулевой гипотезы. Использование очень строгого правила решения означает, что экспериментатор готов пойти на значительный риск, заключающийся в неотвержении нулевой гипотезы, когда верна какая-то другая гипотеза. Таким образом, при низком альфа-уровне экспериментатор будет часто ошибочно заключать, что результаты не подтверждают экспериментальную гипотезу. В отличие от альфа-уровня, для бета-уровня невозможно задать некоторое общее значение вероятности; она различается для каждой конкретной ненулевой гипотезы о различии между условиями. Так, если окажется верной гипотеза о большом различии между условиями (скажем, разница в интенсивности плача +5 ед.), вероятность не отвергнуть нуль-гипотезу (бета) будет низкой даже при использовании строгого альфа-уровня 0,01. С другой стороны, если действительная разность окажется небольшой (скажем, + 1,0), вероятность ошибочного решения не отвергнуть нуль-гипотезу будет намного больше. Однако, логика отношений сохраняется: при одних и тех же данных уменьшение альфа-уровня увеличивает бета-вероятность для всех статистических гипотез, отличных от нуль-гипотезы. О статистической проверке экспериментальных результатов говорят как об имеющей силу в той степени, в какой бета-величина остается низкой для ненулевых гипотез. При хорошей силе выявляются реальные различия. Конечно, сила автоматически повышается с использованием нестрогого правила решения (например 0,10 альфа-уровня), но это увеличивает риск ошибки I типа. Существует два более удачных способа увеличения силы. Один состоит в увеличении надежности данных. Как мы видели на рис. 6.1 (в), даже при небольшом различии между условиями оказывается возможным отвергнуть нуль-гипотезу либо путем увеличения числа испытуемых, либо путем уменьшения случайных вариаций. Другой способ состоит в использовании наиболее эффективных экспериментальных схем и проверок. Те и другие описаны в специальной литературе (см., например, Коэн, 1977). |
Реклама
|
||