§ библиотека мастерская Помощь Контакты Вход —

Дружинин В.Н. Экспериментальная психология: Учебное пособие — М.: ИНФРА-М, 1997

В каталоге: Психология
Прислано в библиотеку: sergei78
Стр. 194

Все написанное выше относится к одномерным шкалам. Шкалы могут быть и многомерными: шкалируемый признак в этом случае имеет ненулевые проекции на два (или более) соответствующих параметра. Векторные свойства, в отличие от скалярных, являются многомерными.

Шкальные преобразования

Возможны два варианта шкальных преобразований:

§  повышение мощности шкалы;

§  понижение мощности шкалы.

Вторая из процедур является тривиальной. Поскольку все возможные процедуры преобразований, которые приемлемы для более мощной шкалы (например, шкалы интервалов), допустимы и для менее мощной (например, шкалы порядка), то у нас есть право рассматривать данные, полученные с помощью интервальной шкалы, как порядковые или, допустим, порядковую шкалу — в качестве номинальной.

Другое дело, если (по каким-либо соображениям) у нас возникает потребность перейти от шкалы наименований к шкале порядка и т.д. Для этого требуется вводить необъективные (с позиций математической теории измерений) допущения и эмпирические приемы, базирующиеся лишь на интуиции и правдоподобных рассуждениях. Но в большинстве случаев производится эмпирическая проверка: в какой мере данные, полученные с помощью "слабой" шкалы, удовлетворяют требованиям более "мощной" шкалы.

Рассмотрим переход от шкалы наименований к порядковой шкале. Естественно, для этого нужно упорядочить классы по некоторому основанию. Предположим, что принадлежность объекта к некоторому классу есть случайная функция. Тогда переход от номинативной шкалы к шкале порядка возможен в том случае, если существует упорядоченность классов. Во-первых, для каждого элемента существует модальный класс, вероятность принадлежности к которому значимо больше, чем к другим классам. Во-вторых, для каждого элемента существует только одна функция вероятностной принадлежности к множеству классов, такая, что эти классы можно упорядочить единственным образом. Проще говоря, каждый класс должен иметь только двух соседей: "слева" и "справа", а порядок соседства определяется эмпирической частотой попадания элементов в различные классы. В "свой" класс элемент попадает чаще, в соседние со "своим" — реже и в отдаленные — еще реже. При обработке данных осуществляется эмпирическая проверка каждой тройки классов на стохастическую транзитивность. Преобразование шкалы порядка в шкалу интервалов — более частый вариант. Он подробно описан в литературе, посвященной теории психологических измерений, в частности в теории тестов.

из 261
Предыдущая    Следующая
 
Реклама
Авторизуйтесь