§ библиотека мастерская Помощь Контакты Вход —

Дружинин В.Н. Экспериментальная психология: Учебное пособие — М.: ИНФРА-М, 1997

В каталоге: Психология
Прислано в библиотеку: sergei78
Стр. 148

Планы, используемые для исследования влияния более двух независимых переменных, применяются редко. Для трех переменных они имеют общий вид L х М х N.

Чаще всего применяются планы 2х2х2: "три независимые переменные — два уровня". Очевидно, добавление каждой новой переменной увеличивает число групп. Общее их число 2 , где n — число переменных в случае двух уровней интенсивности и К — в случае К-уровневой интенсивности (считаем, что число уровней одинаково для всех независимых переменных). Примером этого плана может быть развитие предыдущего. В случае когда нас интересует успешность выполнения экспериментальной серии заданий не только от общей стимуляции, которая производится в форме наказания — удара током, но и от соотношения поощрения и наказания, мы применяем план 3х3х3.

Упрощением полного плана с тремя независимыми переменными вида L х М х N является планирование по методу "латинского квадрата". "Латинский квадрат" применяют тогда, когда нужно исследовать одновременное влияние трех переменных, имеющих два урсгвня или более. Принцип "латинского квадрата" состоит в том, что два уровня разных переменных встречаются в экспериментальном плане только один раз. Тем самым процедура значительно упрощается, не говоря о том, что экспериментатор избавляется от необходимости работать с огромными выборками.

Предположим, что у нас есть три независимые переменные, с тремя уровнями каждая:

L, K, L3

М, М, М,

А, В, С

План по методу "латинского квадрата" выглядит следующим образом:

  L,
L
L,
М,
А,
В.
С,
М,
В,
С,
А,
М,
С,
А,
В;

Такой же прием используется для контроля внешних переменных (контрбалансировка). Нетрудно заметить, что уровни третьей переменной N (А, В, С,) встречаются в каждой строке и в каждой колонке по одному разу. Комбинируя результаты по строкам, столбцам и уровням, можно выявить влияние каждой из независимых переменных на зависимую, а также степень попарного взаимодействия переменных.

из 261
Предыдущая    Следующая
 
Реклама
Авторизуйтесь