§ библиотека мастерская Помощь Контакты Вход —

Талызина Н. Ф. Педагогическая психология: Учеб. пособие для студ. сред. пед. учеб. заведений

Стр. 72

Язык, как и математику, можно изучать по существу, т.е. с пониманием его специфических особенностей, с умением опираться на них, пользоваться ими. Но это будет только в том случае, когда учитель формирует необходимые приемы языкового мышления. Если же об этом должной заботы не проявляется, то язык изучается формально, без понимания сути, а поэтому и не вызывает интереса у учащихся.

Следует отметить, что иногда необходимо формировать такие специфические приемы познавательной деятельности, которые выходят за рамки изучаемого предмета и в то же время определяют успех в его овладении. Особенно ярко это проявляется при решении арифметических задач.

Для того чтобы понять особенности работы с арифметическими задачами, прежде всего ответим на вопрос: в чем состоит отличие решения задачи от решения примеров? Известно, что ученики гораздо легче справляются с примерами, чем с задачами. Известно также, что главное затруднение состоит обычно ввыборе действия, а не в его выполнении. Почему так происходит и что значит выбрать действие? Вот первые вопросы, на которые надо ответить.

Отличие решения задач от решения примеров состоит в том, что в примерах все действия указаны, и ученик должен лишь выполнить их в определенном порядке. При решении же задачи школьник прежде всего должен определить, какие действия необходимо совершить. В условии задачи всегда описана та или иная ситуация: заготовка корма, изготовление деталей, продажа товаров, движение поездов и т.д. За этой конкретной ситуацией ученик должен увидеть определенные арифметические отношения. Другими словами, он должен фактически описать приведенную в задаче ситуацию на языке математики.

Естественно, что для правильного описания ему надо не только знать саму арифметику, но и понимать сущность основных элементов ситуации, их отношения. Так, при решении задач на «куплю-продажу» ученик может правильно действовать только тогда, когда понимает, что такое цена, стоимость, какие отношения между ценой, стоимостью и количеством товара. Учитель часто полагается на житейский опыт школьников и не всегда уделяет достаточное внимание анализу описанных в задачах ситуации.

Если при решении задач на «куплю-продажу» учащиеся имеют какой-то житейский опыт, то при решении задач, например, на «движение» их опыт оказывается явно недостаточным. Обычно этот вид задач вызывает у школьников затруднения.

Анализ этих видов задач показывает, что основу описываемого в них сюжета составляют величины, связанные с процессами: скорость поездов, время протекания процесса, продукт (результат), к которому приводит этот процесс или который он уничтожает. Это может быть путь, проделанный поездом; это может быть израсходованный корм и т.д. Успешное решение этих задач предполагает правильное понимание не только этих величин, но и существующих между ними отношений. Так, например, ученики должны понимать, что величина пути или производимого продукта прямо пропорциональна скорости и времени. Время, необходимое для получения какого-либо продукта или для прохождения пути, прямо пропорционально величине заданного продукта (или пути), но обратно пропорционально скорости: чем больше скорость, тем меньше время, требуемое для получения продукта или прохождения пути. Если учащиеся усвоят отношения, существующие между этими величинами, то они легко поймут, что по двум величинам, относящимся к одному и тому же участнику процесса, всегда можно найти третью. Наконец, в процессе может участвовать не одна, а несколько сил. Для решения этих задач необходимо понимать отношения между участниками: помогают они друг другу или противодействуют, одновременно или разновременно включились в процессы и т.д.

из 244
Предыдущая    Следующая
 
Реклама
Авторизуйтесь