§ библиотека мастерская Помощь Контакты Вход —

Талызина Н. Ф. Педагогическая психология: Учеб. пособие для студ. сред. пед. учеб. заведений

Стр. 70

Так, учащиеся третьего класса уверенно и быстро складывают многозначные числа столбиком, уверенно указывая, что писать под чертой, что «замечать» наверху. Но задайте вопрос: «А почему надо так делать? Может быть, лучше наоборот: замеченное записывать под чертой, а записанное заметить?» Многие ученики теряются, не знают, что ответить. Это означает, что ученики выполняют арифметические действия успешно, но их математического смысла не понимают. Правильно производя сложение и вычитание, они не понимают принципов, лежащих в основе системы счисления и в основе выполняемых ими действий. Для того чтобы производить арифметические действия, надо прежде всего понять принципы построения системы счисления, в частности зависимость величины числа от его места в разрядной сетке.

Не менее важно научить учеников понимать, что число - это отношение, что числовая характеристика - результат сравнения интересующей величины с каким-то эталоном. Это означает, что одна и та же величина будет получать разную числовую характеристику при сравнении ее с разными эталонами: чем больше эталон, которым мы будем измерять, тем меньше будет число, и наоборот. Значит, не всегда обозначенное тремя меньше обозначенного пятью. Это верно лишь в том случае, когда величины измерены одним и тем же эталоном (мерой). Необходимо научить школьников прежде всего выделять те стороны в объекте, которые подлежат количественной оценке. Если на это не обратить внимания, то у детей сформируется неправильное представление о числе. Так, если показать учащимся первого класса ручку и спросить: «Дети, скажите, это сколько?» - они обычно отвечают, что одна. Но ведь этот ответ верен только в том случае, когда за эталон берется отдельность. Если же за измеряемую величину взять длину ручки, то числовая характеристика может быть разной, она будет зависеть от выбранного для измерения эталона: см, мм, дм и т.д.

Следующее, что должны усвоить учащиеся: сравнивать, складывать, вычитать можно только измеренное одной и той же мерой. Если ученики это понимают, то они смогут и обосновать, почему при сложении столбиком одно записывается под чертой, а другое замечается над следующим разрядом: единицы остаются на своем месте, а образованный из них десяток должен суммироваться с десятками, поэтому его и «замечают» над десятками, и т.д.

Усвоение этого материала обеспечивает полноценные действия и с дробями. В этом случае учащиеся смогут понять, почему необходимо приведение к общему знаменателю: это фактически приведение к общей мере. В самом деле, когда мы складываем, допустим, 1/3 и 1/2, это означает, что в одном случае единицу разделили на три части и взяли одну из них, в другом - на две части и тоже взяли одну из них. Очевидно, что это разные меры. Складывать их нельзя. Для сложения необходимо привести их к единой мере - к общему знаменателю.

из 244
Предыдущая    Следующая
 
Реклама
Авторизуйтесь